374 research outputs found

    Uniqueness of Petrov type D spatially inhomogeneous irrotational silent models

    Get PDF
    The consistency of the constraint with the evolution equations for spatially inhomogeneous and irrotational silent (SIIS) models of Petrov type I, demands that the former are preserved along the timelike congruence represented by the velocity of the dust fluid, leading to \emph{new} non-trivial constraints. This fact has been used to conjecture that the resulting models correspond to the spatially homogeneous (SH) models of Bianchi type I, at least for the case where the cosmological constant vanish. By exploiting the full set of the constraint equations as expressed in the 1+3 covariant formalism and using elements from the theory of the spacelike congruences, we provide a direct and simple proof of this conjecture for vacuum and dust fluid models, which shows that the Szekeres family of solutions represents the most general class of SIIS models. The suggested procedure also shows that, the uniqueness of the SIIS of the Petrov type D is not, in general, affected by the presence of a non-zero pressure fluid. Therefore, in order to allow a broader class of Petrov type I solutions apart from the SH models of Bianchi type I, one should consider more general ``silent'' configurations by relaxing the vanishing of the vorticity and the magnetic part of the Weyl tensor but maintaining their ``silence'' properties i.e. the vanishing of the curls of Eab,HabE_{ab},H_{ab} and the pressure pp.Comment: Latex, 19 pages, no figures;(v2) some clarification remarks and an appendix are added; (v3) minor changes to match published versio

    Comment on Ricci Collineations for type B warped space-times

    Get PDF
    We present two counterexamples to the paper by Carot et al. in Gen. Rel. Grav. 1997, 29, 1223 and show that the results obtained are correct but not general.Comment: LaTex, 3 pages, Eq. (9) and reference added, typos corrected; Gen. Rel. Grav (to appear

    Self-similar Bianchi models: II. Class B models

    Full text link
    In a companion article (referred hearafter as paper I) a detailed study of the simply transitive Spatially Homogeneous (SH) models of class A concerning the existence of a simply transitive similarity group has been given. The present work (paper II) continues and completes the above study by considering the remaining set of class B models. Following the procedure of paper I we find all SH models of class B subjected only to the minimal geometric assumption to admit a proper Homothetic Vector Field (HVF). The physical implications of the obtained geometric results are studied by specialising our considerations to the case of vacuum and γ\gamma -law perfect fluid models. As a result we regain all the known exact solutions regarding vacuum and non-tilted perfect fluid models. In the case of tilted fluids we find the \emph{general }self-similar solution for the exceptional type VI1/9_{-1/9} model and we identify it as equilibrium point in the corresponding dynamical state space. It is found that this \emph{new} exact solution belongs to the subclass of models nαα=0n_\alpha ^\alpha =0, is defined for γ(43,32)\gamma \in (\frac 43,\frac 32) and although has a five dimensional stable manifold there exist always two unstable modes in the restricted state space. Furthermore the analysis of the remaining types, guarantees that tilted perfect fluid models of types III, IV, V and VIIh_h cannot admit a proper HVF strongly suggesting that these models either may not be asymptotically self-similar (type V) or may be extreme tilted at late times. Finally for each Bianchi type, we give the extreme tilted equilibrium points of their state space.Comment: Latex, 15 pages, no figures; to appear in Classical Quantum Gravity (uses iopart style/class files); (v2) minor corrections to match published versio

    Wave-like Solutions for Bianchi type-I cosmologies in 5D

    Full text link
    We derive exact solutions to the vacuum Einstein field equations in 5D, under the assumption that (i) the line element in 5D possesses self-similar symmetry, in the classical understanding of Sedov, Taub and Zeldovich, and that (ii) the metric tensor is diagonal and independent of the coordinates for ordinary 3D space. These assumptions lead to three different types of self-similarity in 5D: homothetic, conformal and "wave-like". In this work we present the most general wave-like solutions to the 5D field equations. Using the standard technique based on Campbell's theorem, they generate a large number of anisotropic cosmological models of Bianchi type-I, which can be applied to our universe after the big-bang, when anisotropies could have played an important role. We present a complete review of all possible cases of self-similar anisotropic cosmologies in 5D. Our analysis extends a number of previous studies on wave-like solutions in 5D with spatial spherical symmetry

    A geometric description of the intermediate behaviour for spatially homogeneous models

    Full text link
    A new approach is suggested for the study of geometric symmetries in general relativity, leading to an invariant characterization of the evolutionary behaviour for a class of Spatially Homogeneous (SH) vacuum and orthogonal γ\gamma -law perfect fluid models. Exploiting the 1+3 orthonormal frame formalism, we express the kinematical quantities of a generic symmetry using expansion-normalized variables. In this way, a specific symmetry assumption lead to geometric constraints that are combined with the associated integrability conditions, coming from the existence of the symmetry and the induced expansion-normalized form of the Einstein's Field Equations (EFE), to give a close set of compatibility equations. By specializing to the case of a \emph{Kinematic Conformal Symmetry} (KCS), which is regarded as the direct generalization of the concept of self-similarity, we give the complete set of consistency equations for the whole SH dynamical state space. An interesting aspect of the analysis of the consistency equations is that, \emph{at least} for class A models which are Locally Rotationally Symmetric or lying within the invariant subset satisfying Nαα=0N_{\alpha}^{\alpha}=0 , a proper KCS \emph{always exists} and reduces to a self-similarity of the first or second kind at the asymptotic regimes, providing a way for the ``geometrization'' of the intermediate epoch of SH models.Comment: Latex, 15 pages, no figures (uses iopart style/class files); added one reference and minor corrections; (v3) improved and extended discussion; minor corrections and several new references are added; to appear in Class. Quantum Gra

    Self-similar Bianchi models: I. Class A models

    Full text link
    We present a study of Bianchi class A tilted cosmological models admitting a proper homothetic vector field together with the restrictions, both at the geometrical and dynamical level, imposed by the existence of the simply transitive similarity group. The general solution of the symmetry equations and the form of the homothetic vector field are given in terms of a set of arbitrary integration constants. We apply the geometrical results for tilted perfect fluids sources and give the general Bianchi II self-similar solution and the form of the similarity vector field. In addition we show that self-similar perfect fluid Bianchi VII0_0 models and irrotational Bianchi VI0_0 models do not exist.Comment: 14 pages, Latex; to appear in Classical and Quantum Gravit

    On the general structure of Ricci collineations for type B warped spacetimes

    Full text link
    A complete study of the structure of Ricci collineations for type B warped spacetimes is carried out. This study can be used as a method to obtain these symetries in such spacetimes. Special cases as 2+2 reducible spacetimes, and plane and spherical symmetric spacetimes are considered specifically.Comment: 18 pages. Version accepted for publication in JM

    Generalized Holographic Cosmology

    Full text link
    We consider general black hole solutions in five-dimensional spacetime in the presence of a negative cosmological constant. We obtain a cosmological evolution via the gravity/gauge theory duality (holography) by defining appropriate boundary conditions on a four-dimensional boundary hypersurface. The standard counterterms are shown to renormalize the bare parameters of the system (the four-dimensional Newton's constant and cosmological constant). We discuss the thermodynamics of cosmological evolution and present various examples. The standard brane-world scenarios are shown to be special cases of our holographic construction.Comment: 15 pages, 5 figure
    corecore