13 research outputs found

    Epithelium-dependent regulation of airways smooth muscle function. A histamine-nitric oxide pathway

    Get PDF
    The airway epithelium is responsible for the production of a number of arachidonic acid and nonprostanoid inhibitory factors. Epithelium synthesises nitric oxide (NO) which may be important in regulating the function of airways smooth muscles. We studied in vitro the effect of histamine (100 nM100 μ M) which increases the NO release on rabbit airway smooth muscles induced by 80 mM KCl in the presence or not of 10-5 Methylene blue (MB) (inactivator of guanylate cyclase) or N(G)-monomethyl L-arginine (L-NMMA), a NOS inhibitor. All experiments were done in tracheal muscle strips from 28 rabbits with epithelium and after epithelium removal. The additional use of histamine (1 μ M) on KCl contraction induced a relaxation of 10% of the initial contraction. The additional use of L-NMMA decreased the relaxation to 5% of initial contraction. MB rather than L-NMMA increased the contraction significantly (p<0.01). Epithelium removal increased the contraction induced by KCl (80 mM) and histamine (1 μ M) by about 30% (p<0.001). NO release especially from epithelium regulates the airways smooth muscle functions. Damage to the epithelium may contribute to an increase in airways sensitivity, observed in asthma

    Epithelium-dependent effect of L-glutamate on airways: involvement of prostaglandins.

    Get PDF
    We investigated the effect of the excitatory amino acid (EAA) receptor agonists L-glutamate, N-methyl-D-aspartate (NMDA), (RS)-a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainic acid on KCl-induced contractions of rabbit tracheal smooth muscle, as well as the role of epithelium and endogenously produced nitric oxide and prostaglandins on these responses. L-Glutamate decreased KCI-induced contractions up to 30%. This effect was attenuated by epithelium removal, tetrodotoxin, methylene blue and indomethacin but not by NG-nitro-L-arginine methyl ester. While NMDA, AMPA and kainic acid had no effect, the combination of NMDA + kainic acid decreased KCI-induced contractions. These results suggest that, in rabbit trachea, L-glutamate has, at least in part, an epithelium-dependent effect mediated via prostaglandin formation and that the EAA receptors involved are non-classical

    Resting Tension Affects eNOS Activity in a Calcium-Dependent Way in Airways

    Get PDF
    The alteration of resting tension (RT) from 0.5 g to 2.5 g increased significantly airway smooth muscle contractions induced by acetylcholine (ACh) in rabbit trachea. The decrease in extracellular calcium concentration [Ca2+]o from 2 mM to 0.2 mM reduced ACh-induced contractions only at 2.5 g RT with no effect at 0.5 g RT. The nonselective inhibitor of nitric oxide synthase (NOS), NG-nitro-L-arginine methyl ester (L-NAME) increased ACh-induced contractions at 2.5 g RT. The inhibitor of inducible NOS, S-methylsothiourea or neuronal NOS, 7-nitroindazole had no effect. At 2.5 g RT, the reduction of [Ca2+]o from 2 mM to 0.2 mM abolished the effect of L-NAME on ACh-induced contractions. The NO precursor L-arginine or the tyrosine kinase inhibitors erbstatin A and genistein had no effect on ACh-induced contractions obtained at 2.5 g RT. Our results suggest that in airways, RT affects ACh-induced contractions by modulating the activity of epithelial NOS in a calcium-dependent, tyrosine-phosphorylation-independent way

    Concentration-effect curves for acetylcholine, performed in Krebs solution with low calcium concentration, at an RT of 0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Resting Tension Affects eNOS Activity in a Calcium-Dependent Way in Airways"</p><p></p><p>Mediators of Inflammation 2007;2007():-.</p><p>Published online 28 Mar 2007</p><p>PMCID:PMC1868075.</p><p></p>5 g (a) and 2.5 g (b). Data are means and vertical lines show SE. refers to the number of animals studied
    corecore