3 research outputs found

    Recent developments in cell-based assays and stem cell technologies for botulinum neurotoxin research and drug discovery

    No full text
    Botulinum neurotoxins (BoNTs) are exceptionally potent inhibitors of neurotransmission, causing muscle paralysis and respiratory failure associated with the disease botulism. Currently, no drugs are available to counter intracellular BoNT poisoning. To develop effective medical treatments, cell-based assays provide a valuable system to identify novel inhibitors in a time- and cost-efficient manner. Consequently, cell-based systems including immortalized cells, primary neurons, and stem-cell derived neurons have been established. Stem cell-derived neurons are highly sensitive to BoNT intoxication and represent an ideal model to study the biological effects of BoNTs. Robust immunoassays are used to quantify BoNT activity and play a central role during inhibitor screening. In this review, we examine recent progress in physiologically relevant cell-based assays and high-throughput screening approaches for the identification of both direct and indirect BoNT inhibitors

    Src Family Kinase Inhibitors Antagonize the Toxicity of Multiple Serotypes of Botulinum Neurotoxin in Human Embryonic Stem Cell-Derived Motor Neurons

    No full text
    Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins’ proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin’s enzymatic components, to antagonize multiple BoNT serotypes in motor neurons
    corecore