8 research outputs found

    Time-of-flight methodologies with large-area diamond detectors for the effectively characterization of tens MeV protons

    Get PDF
    A novel detector based on a polycrystalline diamond sensor is here employed in an advanced time-of-flight scheme for the characterization of energetic ions accelerated during laser-matter interactions. The optimization of the detector and of the advanced TOF methodology allow to obtain signals characterized by high signal-to-noise ratio and high dynamic range even in the most challenging experimental environments, where the interaction of high-intensity laser pulses with matter leads to effective ion acceleration, but also to the generation of strong Electromagnetic Pulses (EMPs) with intensities up to the MV/m order. These are known to be a serious threat for the fielded diagnostic systems. In this paper we report on the measurement performed with the PW-class laser system Vega 3 at CLPU (30 J energy, 1021 W/cm2 intensity, 30 fs pulses) irradiating solid targets, where both tens of MeV ions and intense EMP fields were generated. The data were analyzed to retrieve a calibrated proton spectrum and in particular we focus on the analysis of the most energetic portion (E > 5.8 MeV) of the spectrum showing a procedure to deal with the intrinsic lower sensitivity of the detector in the mentioned spectral-range

    Proton stopping measurements at low velocity in warm dense carbon

    Get PDF
    : Ion stopping in warm dense matter is a process of fundamental importance for the understanding of the properties of dense plasmas, the realization and the interpretation of experiments involving ion-beam-heated warm dense matter samples, and for inertial confinement fusion research. The theoretical description of the ion stopping power in warm dense matter is difficult notably due to electron coupling and degeneracy, and measurements are still largely missing. In particular, the low-velocity stopping range, that features the largest modelling uncertainties, remains virtually unexplored. Here, we report proton energy-loss measurements in warm dense plasma at unprecedented low projectile velocities. Our energy-loss data, combined with a precise target characterization based on plasma-emission measurements using two independent spectroscopy diagnostics, demonstrate a significant deviation of the stopping power from classical models in this regime. In particular, we show that our results are in closest agreement with recent first-principles simulations based on time-dependent density functional theory

    Size-Induced Chemical and Magnetic Ordering in Individual Fe–Au Nanoparticles

    Get PDF
    Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe–Au sub-10 nm nanoparticles, suggesting that they are equilib-rium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 com-pounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three com-pounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests an antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results
    corecore