9 research outputs found

    Imaging of thoracic hernias: types and complications

    No full text
    Abstract Thoracic hernias are characterised by either protrusion of the thoracic contents outside their normal anatomical confines or extension of the abdominal contents within the thorax. Thoracic hernias can be either congenital or acquired in aetiology. They can occur at the level of the thoracic inlet, chest wall or diaphragm. Thoracic hernias can be symptomatic or fortuitously discovered on imaging obtained for other indications. Complications of thoracic hernias include incarceration, trauma and strangulation with necrosis. Multiple imaging modalities are available to evaluate thoracic hernias. Radiographs usually offer the first clue to the diagnosis. Upper gastrointestinal radiography can identify bowel herniation and associated complications. CT and occasionally MR can be useful for further evaluation of these abnormalities, accurately identifying the type of hernia, its contents, associated complications, and provide a roadmap for surgical planning. In this article, we review the different types of thoracic hernias and the role of imaging in the evaluation of these hernias. Teaching Points • Protrusion of lung contents beyond the anatomic confines of the thorax constitutes a hernia. • Complications of thoracic hernias include incarceration, trauma and strangulation with necrosis. • Multiple imaging modalities are available to evaluate thoracic hernias. • CT is the imaging modality of choice for identifying thoracic hernias and their complications. • Imaging can provide a roadmap for surgical planning

    Malformed vertebrae: a clinical and imaging review

    No full text
    Abstract A variety of structural developmental anomalies affect the vertebral column. Malformed vertebrae can arise secondary to errors of vertebral formation, fusion and/or segmentation and developmental variation. Malformations can be simple with little or no clinical consequence, or complex with serious structural and neurologic implications. These anomalies can occasionally mimic acute trauma (bipartite atlas versus Jefferson fracture, butterfly vertebra versus burst fracture), or predispose the affected individual to myelopathy. Accurate imaging interpretation of vertebral malformations requires knowledge of ageappropriate normal, variant and abnormal vertebral morphology and the clinical implications of each entity. This knowledge will improve diagnostic confidence in acute situations and confounding clinical scenarios. This review article seeks to familiarize the reader with the embryology, normal and variant anatomy of the vertebral column and the imaging appearance and clinical impact of the spectrum of vertebral malformations arising as a consequence of disordered embryological development. Teaching points • Some vertebral malformations predispose the affected individual to trauma or myelopathy. • On imaging, malformed vertebrae can be indistinguishable from acute trauma. • Abnormalities in spinal cord development may be associated and must be searched for. • Accurate interpretation requires knowledge of normal, variant and abnormal vertebral morphology

    Mechanical birth-related trauma to the neonate: An imaging perspective

    No full text
    Abstract Mechanical birth-related injuries to the neonate are declining in incidence with advances in prenatal diagnosis and care. These injuries, however, continue to represent an important source of morbidity and mortality in the affected patient population. In the United States, these injuries are estimated to occur among 2.6% of births. Although more usual in context of existing feto-maternal risk factors, their occurrence can be unpredictable. While often superficial and temporary, functional and cosmetic sequelae, disability or even death can result as a consequence of birth-related injuries. The Agency for Healthcare research and quality (AHRQ) in the USA has developed, through expert consensus, patient safety indicators which include seven types of birth-related injuries including subdural and intracerebral hemorrhage, epicranial subaponeurotic hemorrhage, skeletal injuries, injuries to spine and spinal cord, peripheral and cranial nerve injuries and other types of specified and non-specified birth trauma. Understandably, birth-related injuries are a source of great concern for the parents and clinician. Many of these injuries have imaging manifestations. This article seeks to familiarize the reader with the clinical spectrum, significance and multimodality imaging appearances of neonatal multi-organ birth-related trauma and its sequelae, where applicable. Teaching points • Mechanical trauma related to birth usually occurs with pre-existing feto-maternal risk factors. • Several organ systems can be affected; neurologic, musculoskeletal or visceral injuries can occur. • Injuries can be mild and transient or disabling, even life-threatening. • Imaging plays an important role in injury identification and triage of affected neonates
    corecore