9 research outputs found
Bio-inspired polymersome nanoreactors
Two key concepts in living organisms are that biochemical reactions are sequestered into reaction compartments such as cells and organelles, and that many of the complex biological reaction cascades involve transient activation of reactions in response to external triggers. Here we review our efforts to implement these concepts into artificial nanoreactors. Block copolymer vesicles (polymersomes) for laccase-catalyzed oxidations as well as a generally applicable permeabilization method for polymersome membranes are highlighted. Moreover, polymersome nanoreactors that can be switched on by visible light and that immediately return to their off state in the dark are reviewed. These systems have the potential to create bio-inspired catalytic systems, e.g. to orchestrate reaction cascades
Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage
Sensing of damage, deformation, and mechanical forces is of vital importance in many applications of fiber-reinforced polymer composites, as it allows the structural health and integrity of composite components to be monitored and microdamage to be detected before it leads to catastrophic material failure. Bioinspired and biomimetic approaches to self-sensing and self-reporting materials are reviewed. Examples include bruising coatings and bleeding composites based on dye-filled microcapsules, hollow fibers, and vascular networks. Force-induced changes in color, fluorescence, or luminescence are achieved by mechanochromic epoxy resins, or by mechanophores and force-responsive proteins located at the interface of glass/carbon fibers and polymers. Composites can also feel strain, stress, and damage through embedded optical and electrical sensors, such as fiber Bragg grating sensors, or by resistance measurements of dispersed carbon fibers and carbon nanotubes. Bioinspired composites with the ability to show autonomously if and where they have been damaged lead to a multitude of opportunities for aerospace, automotive, civil engineering, and wind-turbine applications. They range from safety features for the detection of barely visible impact damage, to the real-time monitoring of deformation of load-bearing components
Laccase-catalyzed controlled radical polymerization of N-vinylimidazole
Laccase from Trametes versicolor is a multi-copper-containing oxidoreductase which was found to catalyze the polymerization of N-vinylimidazole under conditions of atom transfer radical polymerization (ATRP) in aqueous solution (pH 4, 100 mM acetate buffer) at ambient temperature by using sodium ascorbate as a reducing agent. The reaction followed first order kinetics and resulted in polymers with controlled number-average molecular weights (between 1660 and 9970 g mol-1) and relatively narrow, monomodal molecular weight distributions (D between 1.27 and 1.56) according to gel permeation chromatography. Purified polymers were also analyzed by mass spectrometry which revealed a D of 1.07. The enzyme could be separated quantitatively from the polymer, lowering the metal content of the purified polymers below the detection limit of ICP-OES of 9 ppb. The enzyme retained its polymerization activity for more than eight hours, but formed electrostatic complexes with the polymer and underwent conformational changes at the beginning of the reaction. Biocatalytic controlled radical polymerization allows the synthesis of poly(N-vinylimidazole) with a well-defined molecular weight. Such polymers will be useful building blocks in many applications, such as drug- and gene-delivery, fuel cell membranes and polyionic liquids
Synthesis of water-soluble surfactants using catalysed condensation polymerisation in green reaction media
Sustainable and biobased surfactants are required for a wide range of everyday applications. Key drivers are cost, activity and efficiency of production. Polycondensation is an excellent route to build surfactant chains from bio-sourced monomers, but this typically requires high processing temperatures (≥200 °C) to remove the condensate and to lower viscosity of the polymer melt. In addition, high temperatures also increase the degree of branching and cause discolouration through the degradation of sensitive co-initiators and monomers. Here we report the synthesis of novel surface-active polymers from temperature sensitive renewable building blocks such as dicarboxylic acids, polyols (D-sorbitol) and fatty acids. We demonstrate that the products have the potential to be key components in renewable surfactant design, but only if the syntheses are optimised to ensure linear chains with hydrophilic character. The choice of catalyst is key to this control and we have assessed three different approaches. Additionally, we also demonstrate that use of supercritical carbon dioxide (scCO2) can dramatically improve conversion by reducing reaction viscosity, lowering reaction temperature, and driving condensate removal. We also evaluate the performance of the new biobased surfactants, focussing upon surface tension, and critical micelle concentration
Facile Dye-Initiated Polymerization of Lactide–Glycolide Generates Highly Fluorescent Poly(lactic-co-glycolic Acid) for Enhanced Characterization of Cellular Delivery
Copyright © 2020 American Chemical Society. Poly(lactic-co-glycolic acid) (PLGA) is a versatile synthetic copolymer that is widely used in pharmaceutical applications. This is because it is well-tolerated in the body, and copolymers of varying physicochemical properties are readily available via ring-opening polymerization. However, native PLGA polymers are hard to track as drug delivery carriers when delivered to subcellular spaces, due to the absence of an easily accessible "handle" for fluorescent labeling. Here we show a one-step, scalable, solvent-free, synthetic route to fluorescent blue (2-aminoanthracene), green (5-aminofluorescein), and red (rhodamine-6G) PLGA, in which every polymer chain in the sample is fluorescently labeled. The utility of initiator-labeled PLGA was demonstrated through the preparation of nanoparticles, capable of therapeutic subcellular delivery to T-helper-precursor-1 (THP-1) macrophages, a model cell line for determining in vitro biocompatibility and particle uptake. Super resolution confocal fluorescence microscopy imaging showed that dye-initiated PLGA nanoparticles were internalized to punctate regions and retained bright fluorescence over at least 24 h. In comparison, PLGA nanoparticles with 5-aminofluorescein introduced by conventional nanoprecipitation/encapsulation showed diffuse and much lower fluorescence intensity in the same cells and over the same time periods. The utility of this approach for in vitro drug delivery experiments was demonstrated through the concurrent imaging of the fluorescent drug doxorubicin (λex = 480 nm, λem = 590 nm) with carrier 5-aminofluorescein PLGA, also in THP-1 cells, in which the intracellular locations of the drug and the polymer could be clearly visualized. Finally, the dye-labeled particles were evaluated in an in vivo model, via delivery to the nematode Caenorhabditis elegans, with bright fluorescence again apparent in the internal tract after 3 h. The results presented in this manuscript highlight the ease of synthesis of highly fluorescent PLGA, which could be used to augment tracking of future therapeutics and accelerate in vitro and in vivo characterization of delivery systems prior to clinical translation.
Correction to “Facile Dye-Initiated Polymerization of Lactide−Glycolide Generates Highly Fluorescent Poly(lactic-coglycolic Acid) for Enhanced Characterization of Cellular Delivery”
There is a change to the order of authorship for this published Letter. The author list should appear as it does in this Addition and Correction. All authors have agreed to this change
Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects
Enzymatically synthesised poly(glycerol adipate) (PGA) has shown a palette of key desirable properties required for a biomaterial to be considered a ‘versatile polymeric tool’ in the field of drug delivery. PGA and its variations can self-assemble into nanoparticles (NPs) and interact at different levels with small active molecules. PGA derivatives are usually obtained by functionalising the glyceryl side hydroxyl group present along the main polymer scaffold. However, if the synthetic pathways are not finely tuned, the self-assembling ability of these new polymeric modifications might be hampered by the poor amphiphilic balance. For this reason, we have designed a straightforward one-pot synthetic modification, using a small library of diols in combination with glycerol, aimed at altering the backbone of the polymer without affecting the hydrophilic glyceryl portion. The diols introduce additional functionality into the backbone of PGA alongside the secondary hydroxyl group already present. We have investigated how extra functionalities along the polymer backbone alter the final polymer reactivity as well the chemical and biological properties of the nanoparticles. In addition, with the intent to further improve the green credentials of the enzymatic synthesis, a solvent derived from renewable resources, (2-methyl tetrahydrofuran, 2-MeTHF) was employed for the synthesis of all the PGA-variants as a replacement for the more traditionally used and fossil-based tetrahydrofuran (THF). In vitro assays carried out to evaluate the potential of these novel materials for drug delivery applications demonstrated very low cytotoxicity characteristic against NIH 3T3 model cell line
Light-responsive block copolymers with a spiropyran located at the block junction
Block copolymers with a functional group between their blocks are relatively little explored even though this molecular architecture can reduce the aggregation of the functional groups, promote the phase separation in nanophase-separated materials, and has other interesting effects. Spiropyrans are well-known for their ability to switch to their polar merocyanine form in response to light, force and other stimuli. The synthesis of stimuli-responsive AB-type block copolymers with spiropyran moieties located at the junction of the blocks is presented here. A homopolymer is synthesized from a trimethylindolenine-based atom transfer radical polymerization (ATRP) initiator, followed by its modification to a spiropyran end-functionalized polymer. The spiropyran functionalized polymer is then used as a macro-initiator for the synthesis of a second polymer block by ring opening polymerization (ROP). Alternatively, spiropyran homopolymers are conjugated to other preformed polymers by esterification. The resulting block copolymers reversibly switch under UV and white light irradiation over multiple cycles, and a block copolymer reduced the tendency of the merocyanine to aggregate during switching. The stimuli-responsive block copolymer could be useful for a range of applications, e.g. for bioinspired polymersome nanoreactors, or in membranes with switchable permeability