4 research outputs found

    Dot Immunobinding Assay for the Rapid Serodetection of Scedosporium/Lomentospora in Cystic Fibrosis Patients

    Get PDF
    Scedosporium; Cystic fibrosis; Serological detectionScedosporium; Fibrosi quística; Detecció serològicaScedosporium; Fibrosis quística; Detección serológicaThe detection of Scedosporium/Lomentospora is still based on non-standardized low-sensitivity culture procedures. This fact is particularly worrying in patients with cystic fibrosis (CF), where these fungi are the second most common filamentous fungi isolated, because a poor and delayed diagnosis can worsen the prognosis of the disease. To contribute to the discovery of new diagnostic strategies, a rapid serological dot immunobinding assay (DIA) that allows the detection of serum IgG against Scedosporium/Lomentospora in less than 15 min was developed. A crude protein extract from the conidia and hyphae of Scedosporium boydii was employed as a fungal antigen. The DIA was evaluated using 303 CF serum samples (162 patients) grouped according to the detection of Scedosporium/Lomentospora in the respiratory sample by culture, obtaining a sensitivity and specificity of 90.48% and 79.30%, respectively; positive and negative predictive values of 54.81% and 96.77%, and an efficiency of 81.72%. The clinical factors associated with the results were also studied using a univariate and a multivariate analysis, which showed that Scedosporium/Lomentospora positive sputum, elevated anti-Aspergillus serum IgG and chronic Pseudomonas aeruginosa infection were significantly associated with a positive result in DIA, while Staphylococcus aureus positive sputum showed a negative association. In conclusion, the test developed can offer a complementary, rapid, simple and sensitive method to contribute to the diagnosis of Scedosporium/Lomentospora in patients with CF.This research was funded by the Basque Government, grant numbers IT1362-19 and IT1657-22. L.M-S and M.A have received a predoctoral grant from the Basque Government and L.A-F from the University of the Basque Country (UPV/EHU)

    Microbiota and fungal-bacterial interactions in the cystic fibrosis lung

    No full text
    International audienceAbstract The most common genetic hereditary disease affecting Caucasians is cystic fibrosis (CF), which is caused by autosomal recessive mutations in the CFTR gene. The most serious consequence is the production of a thick and sticky mucus in the respiratory tract, which entraps airborne microorganisms and facilitates colonization, inflammation and infection. Therefore, the present article compiles the information about the microbiota and, particularly, the inter-kingdom fungal-bacterial interactions in the CF lung, the molecules involved and the potential effects that these interactions may have on the course of the disease. Among the bacterial compounds, quorum sensing-regulated molecules such as homoserine lactones, phenazines, rhamnolipids, quinolones and siderophores (pyoverdine and pyochelin) stand out, but volatile organic compounds, maltophilin and CF-related bacteriophages are also explained. These molecules exhibit diverse antifungal mechanisms, including iron starvation and induction of reactive oxygen and nitrogen species production. The fungal compounds are less studied, but they include cell wall components, siderophores, patulin and farnesol. Despite the apparent competition between microorganisms, the persistence of significant rates of bacterial-fungal co-colonization in CF suggests that numerous variables influence it. In conclusion, it is crucial to increase scientific and economic efforts to intensify studies on the bacterial-fungal inter-kingdom interactions in the CF lung

    Dot Immunobinding Assay for the Rapid Serodetection of Scedosporium/Lomentospora in Cystic Fibrosis Patients

    No full text
    The detection of Scedosporium/Lomentospora is still based on non-standardized low-sensitivity culture procedures. This fact is particularly worrying in patients with cystic fibrosis (CF), where these fungi are the second most common filamentous fungi isolated, because a poor and delayed diagnosis can worsen the prognosis of the disease. To contribute to the discovery of new diagnostic strategies, a rapid serological dot immunobinding assay (DIA) that allows the detection of serum IgG against Scedosporium/Lomentospora in less than 15 min was developed. A crude protein extract from the conidia and hyphae of Scedosporium boydii was employed as a fungal antigen. The DIA was evaluated using 303 CF serum samples (162 patients) grouped according to the detection of Scedosporium/Lomentospora in the respiratory sample by culture, obtaining a sensitivity and specificity of 90.48% and 79.30%, respectively; positive and negative predictive values of 54.81% and 96.77%, and an efficiency of 81.72%. The clinical factors associated with the results were also studied using a univariate and a multivariate analysis, which showed that Scedosporium/Lomentospora positive sputum, elevated anti-Aspergillus serum IgG and chronic Pseudomonas aeruginosa infection were significantly associated with a positive result in DIA, while Staphylococcus aureus positive sputum showed a negative association. In conclusion, the test developed can offer a complementary, rapid, simple and sensitive method to contribute to the diagnosis of Scedosporium/Lomentospora in patients with CF

    <i>Candida albicans</i> increases the aerobic glycolysis and activates MAPK-dependent inflammatory response of liver sinusoidal endothelial cells

    No full text
    The liver, and more specifically, the liver sinusoidal endothelial cells, constitute the beginning of one of the most important responses for the elimination of hematogenously disseminated Candida albicans. Therefore, we aimed to study the mechanisms involved in the interaction between these cells and C. albicans. Transcriptomics-based analysis showed an increase in the expression of genes related to the immune response (including receptors, cytokines, and adhesion molecules), as well as to aerobic glycolysis. Further in vitro analyses showed that IL-6 production in response to C. albicans is controlled by MyD88- and SYK-pathways, suggesting an involvement of Toll-like and C-type lectin receptors and the subsequent activation of the MAP-kinases and c-Fos/AP-1 transcription factor. In addition, liver sinusoidal endothelial cells undergo metabolic reprogramming towards aerobic glycolysis induced by C. albicans, as confirmed by the increased Extracellular Acidification Rate and the overexpression of enolase (Eno2), hexonikase (Hk2) and glucose transporter 1 (Slc2a1). In conclusion, these results indicate that the hepatic endothelium responds to C. albicans by increasing aerobic glycolysis and promoting an inflammatory environment.</p
    corecore