3,235 research outputs found

    Spatially resolved LMC star formation history: I. Outside in evolution of the outer LMC disk

    Full text link
    We study the evolution of three fields in the outer LMC disk Rgc=3.5-6.2 Kpc. Their star formation history indicates a stellar populations gradient such that younger stellar populations are more centrally concentrated. We identify two main star forming epochs, separated by a period of lower activity between ~7 and ~4 Gyr ago. Their relative importance varies from a similar amount of stars formed in the two epochs in the innermost field, to only 40% of the stars formed in the more recent epoch in the outermost field. The young star forming epoch continues to the present time in the innermost field, but lasted only till ~0.8 and 1.3 Gyr ago at Rgc=5.5 degrees and 7.1 degrees, respectively. This gradient is correlated with the measured HI column density and implies an outside-in quenching of the star formation, possibly related to a variation of the size of the HI disk. This could either result from gas depletion due to star formation or ram-pressure stripping, or from to the compression of the gas disk as ram-pressure from the Milky Way halo acted on the LMC interstellar medium. The latter two situations may have occurred when the LMC first approached the Milky Way.Comment: 15 pages, 13 figures, 4 tables. MNRAS, in pres

    The Chemical Enrichment History of the Large Magellanic Cloud

    Full text link
    Ca II triplet spectroscopy has been used to derive stellar metallicities for individual stars in four LMC fields situated at galactocentric distances of 3\arcdeg, 5\arcdeg, 6\arcdeg\@ and 8\arcdeg\@ to the north of the Bar. Observed metallicity distributions show a well defined peak, with a tail toward low metallicities. The mean metallicity remains constant until 6\arcdeg\@ ([Fe/H]\sim-0.5 dex), while for the outermost field, at 8\arcdeg, the mean metallicity is substantially lower than in the rest of the disk ([Fe/H]\sim-0.8 dex). The combination of spectroscopy with deep CCD photometry has allowed us to break the RGB age--metallicity degeneracy and compute the ages for the objects observed spectroscopically. The obtained age--metallicity relationships for our four fields are statistically indistinguishable. We conclude that the lower mean metallicity in the outermost field is a consequence of it having a lower fraction of intermediate-age stars, which are more metal-rich than the older stars. The disk age--metallicity relationship is similar to that for clusters. However, the lack of objects with ages between 3 and 10 Gyr is not observed in the field population. Finally, we used data from the literature to derive consistently the age--metallicity relationship of the bar. Simple chemical evolution models have been used to reproduce the observed age--metallicity relationships with the purpose of investigating which mechanism has participated in the evolution of the disk and bar. We find that while the disk age--metallicity relationship is well reproduced by close-box models or models with a small degree of outflow, that of the bar is only reproduced by models with combination of infall and outflow.Comment: 45 pages, 10 figures, accepted for publication in Astronomical Journa

    Recent Star Formation in Sextans A

    Full text link
    We investigate the relationship between the spatial distributions of stellar populations and of neutral and ionized gas in the Local Group dwarf irregular galaxy Sextans A. This galaxy is currently experiencing a burst of localized star formation, the trigger of which is unknown. We have resolved various populations of stars via deep UBV(RI)_C imaging over an area with diameter \sim 5.'3. We have compared our photometry with theoretical isochrones appropriate for Sextans A, in order to determine the ages of these populations. We have mapped out the history of star formation, most accurately for times \lesssim 100 Myr. We find that star formation in Sextans A is correlated both in time and space, especially for the most recent (\lesssim 12 Myr) times. The youngest stars in the galaxy are forming primarily along the inner edge of the large H I shell. Somewhat older populations, \lesssim 50 Myr, are found inward of the youngest stars. Progressively older star formation, from \sim 50--100 Myr, appears to have some spatially coherent structure and is more centrally concentrated. The oldest stars we can accurately sample appear to have approximately a uniform spatial distribution, which extends beyond a surface brightness of \mu_B \simeq 25.9 mag arcsec^{-2} (or, a radius r \simeq 2.'3$). Although other processes are also possible, our data provides support for a mechanism of supernova-driven expansion of the neutral gas, resulting in cold gas pileup and compression along the H I shell and sequential star formation in recent times.Comment: 64 pages, 22 figures, to appear in A

    The Stellar Structures around Disk Galaxies

    Get PDF
    We present a brief summary of our current results on the stellar distribution and population gradients of the resolved stars in the surroundings of ~50 nearby disk galaxies, observed with space- (Hubble & Spitzer) and ground-based telescopes (Subaru, VLT, BTA, Palomar, CFHT & INT). We examine the radial (in-plane) and vertical (extraplanar) distributions of resolved stars as a function of stellar age and metallicity by tracking changes in the color-magnitude diagram of face-on and edge-on galaxies. Our data show, that the scale length and height of a stellar population increases with age, with the oldest detected stellar populations identified at a large galactocentric radius or extraplanar height, out to typically a few kpc. In the most massive of the studied galaxies there is evidence for a break in number density and color gradients of evolved stars, which plausibly correspond to the thick disk and halo components of the galaxies. The ratio of intermediate-age to old stars in the outermost fields correlate with the gas fraction, while relative sizes of the thick-to-thin disks anticorrelate with galactic circular velocity.Comment: To appear in the proceedings for the IAUS 241 'Stellar Populations as Building Blocks of Galaxies' held in La Palma, Spain, December 10-16 200

    Phase Diagram of Multilayer Magnetic Structures

    Full text link
    Multilayer "ferromagnet-layered antiferromagnet" (Fe/Cr) structures frustrated due to the roughness of layer interfaces are studied by numerical modeling methods. The "thickness-roughness" phase diagrams for the case of thin ferromagnetic film on the surface of bulk antiferromagnet and for two ferromagnetic layers separated by an antiferromagnetic interlayer are obtained and the order parameter distributions for all phases are found. The phase transitions nature in such systems is considered. The range of applicability for the "magnetic proximity model" proposed by Slonczewski is evaluated.Comment: 8 pages, 8 figure

    The Carina Project VII: Towards the breaking of the age-metallicity degeneracy of red giant branch stars using the c_UBI index

    Full text link
    We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper colour combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, \sim 12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c_UBI=(U-B)-(B-I) pseudo-colour allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have more negative c_UBI pseudo-colour than intermediate-age ones. We correlate the pseudo-colour of RGB stars with their chemical properties, finding a significant trend between the iron content and the c_UBI. Stars belonging to the old population are systematically more metal poor ([Fe/H]=-2.32\pm0.08 dex) than the intermediate-age ones ([Fe/H]=-1.82\pm0.03 dex). This gives solid evidence on the chemical evolution history of this galaxy, and we have a new diagnostic that can allow us to break the age-metallicity degeneracy of H-burning advanced evolutionary phases. We compared the distribution of stars in the c_UBI plane with theoretical isochrones, finding that no satisfactory agreement can be reached with models developed in a theoretical framework based on standard heavy element distributions. Finally, we discuss possible systematic differences when compared with multiple populations in GCs.Comment: 11 pages, 11 figures, 1 table, accepted for publication in Ap

    A technique using a membrane flow cell to determine average mass transfer coefficients and tortuosity factors in biofilms

    Get PDF
    Average mass transfer coefficients of an inert compound (LiCl) within denitrifying biofilms were monitored during biofilm growth in a membrane flow cell under different flow conditions, until the biofilm reached (pseudo-) steady state. Average effective diffusivities were found to increase with the decrease in tortuosity factors of the biofilm matrix. The lowest tortuosity factor corresponded to the biofilm formed under the highest liquid velocity.União Europeia - BioToBio - ERBFMRXCT97-0114. Centro de Investigación Científica y Tecnológica (CICYT) - AMB 98-0288, PR404E 2000/6-
    corecore