242 research outputs found

    Mitochondrial Cytochrome b Phylogeny and Historical Biogeography of the Tohoku Salamander, Hynobius Lichenatus (Amphibia, Caudata)

    Get PDF
    The Tohoku salamander, Hynobius lichenatus Boulenger, 1883, is a lentic breeding species widespread throughout montane regions of northeastern Japan. To explore intraspecific genetic variation and infer evolutionary history of H. lichenatus, we performed mitochondrial DNA analysis (complete 1141 bp sequences of the mitochondrial cytochrome b gene) using 215 adult and larval individuals collected from 75 localities, encompassing known distributional range of the species. Hynobius lichenatus proved to be monophyletic, including three well-supported and geographically structured clades (Clade I from northern Kanto, Clade II from southern Tohoku, and Clade III from northern Tohoku). These clades, respectively, comprise several subclades, and show genetic distances as large as those seen between different species of Hynobius. Results of population statistic analyses indicate that all clades and most subclades have maintained high genetic diversity and demographic stability over long periods. Molecular dating indicates divergence in H. lichenatus concords with topographic evolution of northeastern Japan from late Miocene to early Pleistocene, suggesting that paleogeographic events in this region, such as orogenesis, sea level change, and volcanic activity, have been crucial for shaping genetic patterns and diversity in this species. Hynobius lichenatus greatly differs from many other animal species from northeastern Japan in its much older periods and the pattern of genetic differentiation, and is suggested as an old faunal element in this region

    Oceanographic Data in Lutzow-Holm Bay from July 1998 to December 1998 (JARE-39)

    Get PDF

    Reconstruction of past atmospheric CH4 concentration from the firn air data at Dome Fuji (scientific note)

    Get PDF
    Air samples were collected from different depths of the firn layer at Dome Fuji in December 1998 and analyzed for CH4 concentrations. The age distribution of CH4 in the firn was calculated by using a one-dimensional numerical model, and then the inverse method was applied to reconstruct variations of atmospheric CH4 in the past. The age distribution function was calculated by including processes of molecular diffusion, downward air advection and bubble trapping in the snow-ice transition zone. Once the age distribution function is calculated, the vertical distribution of CH4 in the firn layer can be reconstructed by a linear combination of the age distribution functions weighted by the atmospheric CH4 concentrations in the past. Therefore, the most plausible past atmospheric record of CH4 can be derived iteratively so that its observed profile in the firn layer was reproduced well. In order to check the calculation scheme, the estimated variation of atmospheric CH4 was compared with direct measurements in the Antarctic region. They were in good agreement with each other, even for rapid slowing down of the secular increase observed in the 1990\u27s

    RNomics of Thermus themophilus HB8 by DNA microarray and next-generation sequencing

    Get PDF
    By using the data obtained by the DNA microarray analysis for the intergenic regions applied to RNA samples extracted from Thermus thermophilus HB8, seven small non-coding RNAs, TtR-1 to TtR-7, were found to be expressed in the cells growing in rich and/or minimal media. By analysing the time course of the expression for the cell growth in combination with the sequence comparison to the known RNAs, two RNAs, TtR-1 and TtR-2, are suggested to be riboswitches. The existence of the seven RNAs and the exact sequence and length, ranging 77-284 nt, were confirmed by the next-generation sequencing. By the combination of these two high-throughput techniques, our understanding of RNAs in the cell will be increased significantly

    Low Back Pain

    Get PDF

    Improved scientific ballooning applied to the cryo-sampling experiment at Syowa Station

    Get PDF
    On January 3, 1998, a large balloon (30000 m^3) was successfully launched at Syowa Station for the cryo-sampling of the stratospheric atmosphere. The sampling system splashed down in the Liitzow-Holm Bay and recovered by icebreaker SHIRASE. The cryo-sampling at Antarctica was the first trial in the world and the recovery of a heavy payload was also the first challenge at Syowa Station. A lot of new ballooning technologies were applied to this operation, such as compact balloon launching equipments, a reliable recovery system, a handy ground radio station for the balloon tracking and data acquisition and so forth. The realtime flight data could be received at National Institute of Polar Research (NIPR) in Tokyo by using the computer network via INMARSAT. At NIPR the collaboration members could monitor the entire process of the experiment at Syowa Station in detail and send some instructions and advice. This balloon experiment showed an extended possibility of a large scale scientific ballooning at Syowa Station. This paper deals with those newly developed balloon engineering technologies

    Magnetization Transfer Prepared Gradient Echo MRI for CEST Imaging

    Get PDF
    Chemical exchange saturation transfer (CEST) is an emerging MRI contrast mechanism that is capable of noninvasively imaging dilute CEST agents and local properties such as pH and temperature, augmenting the routine MRI methods. However, the routine CEST MRI includes a long RF saturation pulse followed by fast image readout, which is associated with high specific absorption rate and limited spatial resolution. In addition, echo planar imaging (EPI)-based fast image readout is prone to image distortion, particularly severe at high field. To address these limitations, we evaluated magnetization transfer (MT) prepared gradient echo (GRE) MRI for CEST imaging. We proved the feasibility using numerical simulations and experiments in vitro and in vivo. Then we optimized the sequence by serially evaluating the effects of the number of saturation steps, MT saturation power (B1), GRE readout flip angle (FA), and repetition time (TR) upon the CEST MRI, and further demonstrated the endogenous amide proton CEST imaging in rats brains (n = 5) that underwent permanent middle cerebral artery occlusion. The CEST images can identify ischemic lesions in the first 3 hours after occlusion. In summary, our study demonstrated that the readily available MT-prepared GRE MRI, if optimized, is CEST-sensitive and remains promising for translational CEST imaging
    corecore