42 research outputs found

    Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    Get PDF
    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo

    Photoacoustic in vivo 3D imaging of tumor using a highly tumor-targeting probe under high-threshold conditions

    Get PDF
    Three-dimensional (3D) representation of a tumor with respect to its size, shape, location, and boundaries is still a challenge in photoacoustic (PA) imaging using artificial contrast agents as probes. We carried out PA imaging of tumors in mice using 800RS-PMPC, which was obtained by coupling of 800RS, a near-infrared cyanine dye, with PMPC, a highly selective tumor-targeting methacrylate polymer having phosphorylcholine side chains, as a probe. The conjugate 800RS-PMPC forms compact nanoparticles (dDLS = 14.3 nm), retains the biocompatibility of the parent polymer (PMPC) and exhibits unprecedented PA performance. When applied to mice bearing a 6 × 3 × 3 mm3 tumor buried 6 mm beneath the skin, the probe 800RS-PMPC selectively accumulates in the tumor and emits PA signals that are strong enough to be unambiguously distinguished from noise signals of endogenous blood/hemoglobin. The PA image thus obtained under high-threshold conditions allows 3D characterization of the tumor in terms of its size, shape, location, and boundaries

    Inhomogeneous Superconductivity in Condensed Matter and QCD

    Full text link
    Inhomogeneous superconductivity arises when the species participating in the pairing phenomenon have different Fermi surfaces with a large enough separation. In these conditions it could be more favorable for each of the pairing fermions to stay close to its Fermi surface and, differently from the usual BCS state, for the Cooper pair to have a non zero total momentum. For this reason in this state the gap varies in space, the ground state is inhomogeneous and a crystalline structure might be formed. This situation was considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and the corresponding state is called LOFF. The spontaneous breaking of the space symmetries in the vacuum state is a characteristic feature of this phase and is associated to the presence of long wave-length excitations of zero mass. The situation described here is of interest both in solid state and in elementary particle physics, in particular in Quantum Chromo-Dynamics at high density and small temperature. In this review we present the theoretical approach to the LOFF state and its phenomenological applications using the language of the effective field theories.Comment: RevTex, 83 pages, 26 figures. Submitted to Review of Modern Physic

    チオレドキシン ケツゴウ タンパク 2 ケッソン マウス ユライ ノ ジュジョウ サイボウ ワ Tサイボウ オウトウ オ ユウドウシニクイ

    No full text
    京都大学0048新制・課程博士博士(医学)甲第14047号医博第3263号新制||医||969(附属図書館)UT51-2008-F439京都大学大学院医学研究科病理系専攻(主査)教授 三森 経世, 教授 五十嵐 樹彦, 教授 杉田 昌彦学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Pharmacokinetics of chiral dendrimer-triamine-coordinated Gd-MRI contrast agents evaluated by in Vivo MRI and estimated by in Vitro QCM

    Get PDF
    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo

    Thioredoxin binding protein-2 mediates metabolic adaptation in response to lipopolysaccharide in vivo.

    Get PDF
    Endotoxin triggers a reorganization of the energy metabolic pathway, including the promotion of fatty acid utilization to adapt to a high energy demand during endotoxemia. However, the factors responsible for the metabolic adaptation and characteristic pathologies resulting from defective utilization fatty acids during endotoxin response have not been fully clarified. The thioredoxin binding protein-2 (TBP-2) knockout (TBP-2) mouse is an animal model of fatty acid oxidation disorder. The aim of this study was to determine whether and how TBP-2 is involved in metabolic regulation in a lipopolysaccharide (LPS)-induced endotoxemia model in mice

    Differential roles of Annexin A1 (ANXA1/lipocortin-1/lipomodulin) and thioredoxin binding protein-2 (TBP-2/VDUP1/TXNIP) in glucocorticoid signaling of HTLV-I-transformed T cells.

    Get PDF
    Glucocorticoid (GC) is widely used for therapeutic purposes in immunological and hematological disorders. Annexin A1 (ANXA1/lipocortin-1/lipomodulin), a GC-inducible molecule, was regarded as a vital anti-inflammatory mediator of GC. Thioredoxin binding protein-2 (TBP-2/VDUP1/TXNIP), a regulator of redox reactions, cell growth and lipid metabolism, was also reportedly induced by GC. HTLV-I infected T cells undergo the transition from the IL-2 dependent to IL-2 independent growth during the long-term culture in vitro. We found that these T cells responded to GC with growth arrest and apoptosis in the IL-2 dependent growth stage, whereas they failed to respond to GC after their growth had shifted into the IL-2 independent stage. Here we employed these T cell lines and studied the roles of ANXA1 and TBP-2 in mediating GC-induced apoptosis. In GC-sensitive T cells, ANXA1 expression was negligible and unaffected by GC treatment, whereas TBP-2 was expressed and induced by GC treatment. In GC-resistant T cells, however, ANXA1 was highly expressed regardless of GC treatment and promoted cellular proliferation. In contrast, TBP-2 expression was lost and could not mediate the GC-induced apoptosis. In conclusion, these results suggest that TBP-2, but not ANXA1, is directly involved in the switching of GC sensitivity and GC resistance in HTLV-I infected T cell lines, whereas ANXA1 may be a biomarker indicative of the advanced stage of the transformation

    Water-Soluble Phosphorescent Ruthenium Complex with a Fluorescent Coumarin Unit for Ratiometric Sensing of Oxygen Levels in Living Cells

    No full text
    Dual emission was applied to a molecular probe for the ratiometric sensing of oxygen concentration in a living system. We prepared ruthenium complexes possessing a coumarin unit (Ru–Cou), in which the <sup>3</sup>MLCT phosphorescence of the ruthenium complex was efficiently quenched by molecular oxygen, whereas the coumarin unit emitted constant fluorescence independent of the oxygen concentration. The oxygen status could be determined precisely from the ratio of phosphorescence to fluorescence. We achieved the molecular imaging of cellular oxygen levels using Ru–Cou possessing an alkyl chain, which provided appropriate lipophilicity to increase cellular uptake
    corecore