6 research outputs found

    Coseismic and Postseismic Displacement of 2011 Mw 6.8 Tarlay Earthquake, Myanmar using InSAR Techniques and Inversion Analysis

    Get PDF
    In this study, we investigate the March 24th 2011 Mw=6.8 Tarlay earthquake, Myanmar using Interferometric Synthetic Aperture Radar (InSAR) and inversion analysis. We firstly invert InSAR coseismic displacement from our previous study. The inversions are carried out in both single and multi-patch model. The coseismic slip of 2.5 meter from single-patch solution is then combined with long-term slip rate from geomorphological study, resulting in an estimate of 1,140 - 4,160 years recurrence period. Then, coulomb stress changes on nearby faults in northern Thailand are calculated. It is found that stress in western and middle segments of Mae Chan fault decreases significantly while stress increase in eastern segment of Mae Chan, Mae Ing and Chiang Kham fault. Finally, the results from PSInSAR of 29 Radarsat-2 images reveal postseismic displacement rates between -24.4.6 to 34.5 millimeters per yea

    Coastal flood risks in the Bangkok Metropolitan Region, Thailand: combined impacts of land subsidence, sea level rise and storm surge [abstract and map]

    Get PDF
    Coastal flood risks in the Bangkok Metropolitan Region, Thailand: combined impacts of land subsidence, sea level rise and storm surge [abstract and map

    A Case Study on Offshore Platform Deformation Monitoring by using InSAR

    No full text
    The Interferometric Synthetic Aperture Radar (InSAR) technique is well established technique for onshore applications such as landslide, mining, volcano, urban and dam deformation monitoring. However, the ability of the InSAR technique for the offshore application particularly on the oil platform deformation monitoring is still a pending question. Therefore, a study needs to be conducted in order to assess the feasibility of the InSAR technique for monitoring the deformation of offshore platform. In this study, an advanced InSAR technique called Stanford Method of Persistent Scatterer (StaMPS) was utilized to process a stack of TerraSAR-X data. A mask has been developed as an additional module in the StaMPS to remove the noise on the ocean and relax the assigned condition imposed on the processing parameters. The results show that the number of persistent scatterer (PS) points on the offshore platform increased from 15 to 22 points and a smoother pattern of the velocity estimation could be seen when masking was applied to identify the deformation. Furthermore, some limitations and possible solutions of the PSI technique on the offshore platform application are summarized in this paper to guide future users on this application

    A Case Study on Offshore Platform Deformation Monitoring by using InSAR

    No full text
    The Interferometric Synthetic Aperture Radar (InSAR) technique is well established technique for onshore applications such as landslide, mining, volcano, urban and dam deformation monitoring. However, the ability of the InSAR technique for the offshore application particularly on the oil platform deformation monitoring is still a pending question. Therefore, a study needs to be conducted in order to assess the feasibility of the InSAR technique for monitoring the deformation of offshore platform. In this study, an advanced InSAR technique called Stanford Method of Persistent Scatterer (StaMPS) was utilized to process a stack of TerraSAR-X data. A mask has been developed as an additional module in the StaMPS to remove the noise on the ocean and relax the assigned condition imposed on the processing parameters. The results show that the number of persistent scatterer (PS) points on the offshore platform increased from 15 to 22 points and a smoother pattern of the velocity estimation could be seen when masking was applied to identify the deformation. Furthermore, some limitations and possible solutions of the PSI technique on the offshore platform application are summarized in this paper to guide future users on this application
    corecore