24 research outputs found

    Semi-supervised Road Updating Network (SRUNet): A Deep Learning Method for Road Updating from Remote Sensing Imagery and Historical Vector Maps

    Full text link
    A road is the skeleton of a city and is a fundamental and important geographical component. Currently, many countries have built geo-information databases and gathered large amounts of geographic data. However, with the extensive construction of infrastructure and rapid expansion of cities, automatic updating of road data is imperative to maintain the high quality of current basic geographic information. However, obtaining bi-phase images for the same area is difficult, and complex post-processing methods are required to update the existing databases.To solve these problems, we proposed a road detection method based on semi-supervised learning (SRUNet) specifically for road-updating applications; in this approach, historical road information was fused with the latest images to directly obtain the latest state of the road.Considering that the texture of a road is complex, a multi-branch network, named the Map Encoding Branch (MEB) was proposed for representation learning, where the Boundary Enhancement Module (BEM) was used to improve the accuracy of boundary prediction, and the Residual Refinement Module (RRM) was used to optimize the prediction results. Further, to fully utilize the limited amount of label information and to enhance the prediction accuracy on unlabeled images, we utilized the mean teacher framework as the basic semi-supervised learning framework and introduced Regional Contrast (ReCo) in our work to improve the model capacity for distinguishing between the characteristics of roads and background elements.We applied our method to two datasets. Our model can effectively improve the performance of a model with fewer labels. Overall, the proposed SRUNet can provide stable, up-to-date, and reliable prediction results for a wide range of road renewal tasks.Comment: 22 pages, 8 figure

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    An integrated evaluation on factors affecting the performance of superheated steam huff and puff in heavy oil reservoirs

    No full text
    Production of superheated steam huff and puff wells is affected by reservoir geological characteristics (effective thickness, net gross ratio), the state of development (recovery degree, comprehensive water-cut) and steam injection factors (strength of steam injection, steam injection rate, temperature and degree of superheat), etc. On the basis of analysis of each factor, factors set were established and the weight of each factor was determined by the functional correlation between the factors and production of each well. The measured value of each factor was computed by dimensionless analysis of each factor. The comprehensive measured value of all factors was computed by dimensionless value of each factor through comprehensive evaluation methods. Statistics showed that the higher the comprehensive measured value of all factors, the higher the oil production of each well. According to this good correspondence, the comprehensive evaluation template was formed, and the total coincidence reached 96% with high reliability in the practical application in the Kenkiyak Oilfield, Kazakhstan. 摘要: : 过热蒸汽吞吐井生产效果受油藏地质特征(储集层有效厚度、净毛比)、开发状况(采出程度、综合含水)及注汽因素(注汽强度、注汽速度、注汽温度和过热度)等诸多因素的影响。在对各影响因素逐一分析的基础上,建立影响因素集,利用各因素和吞吐井产量之间的相关性确定各因素的权重;将各因素的实际数值无量纲化,分别计算其测度值;采用综合评判方法确定各影响因素的综合测度值。统计肯基亚克油田已吞吐井影响因素综合测度值与开发效果之间的关系,发现综合测度值越高,开发效果越好,二者之间具有很好的对应关系,以此建立过热蒸汽吞吐开发效果综合评价模版,在实际应用中该模版总符合率达到96%,具有较高的可信度。图5表6参21 Key words: heavy oil, superheated steam huff and puff, affecting factor, comprehensive measured value, comprehensive evaluation templat

    Calculation model for on-way parameters of horizontal wellbore in the superheated steam injection

    No full text
    Due to superheated steam as a pure gas, the ordinary steam model for the calculation of horizontal well-bore parameters based on two phases flow theory isn't applicable to the superheated steam injection process. According to the conservation of mass, conservation of momentum and conservation of energy, a calculation model for on-way parameters of horizontal well-bore in the superheated steam injection considering the steam phase changing is set up. The on-way parameters of temperature, pressure and dryness of a horizontal well injected superheated steam from Kazakhstan Kumsai oilfield is calculated using the model, and the calculation result of the new model is in good agreement with that of the field data, which verifies the effectiveness of the model. Sensitivity analysis indicates that the length to the heel of horizontal well undergoing the steam phase state changing increases as the injection rate or the degree of superheat increases, but the increase extent is not significant when the injection rate is larger than 8 t/h or the degree of superheat is larger than 80 °C. In the permeability distribution pattern that the permeability increases along the horizontal well-bore, steam temperature is decreased at the lowest rate and the length to the heel of horizontal well undergoing the steam phase changing is the longest. Key words: heavy oil, horizontal well, superheated steam, steam phase changing, on-way parameters, calculation model, steam injection rat

    Development characteristics, models and strategies for overseas oil and gas fields

    No full text
    Based on about 20 years of accumulated experience and knowledge of oil and gas field development in overseas countries and regions for China's oil companies, the development features, ideas, models and plan designing strategies of overseas oil and gas fields were comprehensively summarized. Overseas oil and gas field development has ten major features, such as non-identity project resource, diversity of contract type, complexity of cooperation model, and so on. The overseas oil and gas field development aims at the maximization of production and benefit during the limited contract period, so the overseas oil and gas field development models are established as giving priority to production by natural energy, building large-scale production capacity, putting into production as soon as possible, realizing high oil production recovery rate, and achieving rapid payback period of investment. According to the overseas contract mode, a set of strategies for overseas oil and gas field development plans were made. For tax systems contracts, the strategy is to adopt the mode of “first fat and then thinner, easier in the first and then harder”, that is, early investment pace, production increase rate, development workload and production were decided by the change of tax stipulated in the contract. For production share contracts, the strategy is to give priority to high production with a few wells at a high production recovery rate to increase the cost-oil and shorten the period of payback. For technical service contracts, the strategy is that the optimal production target and workload of the project were determined by the return on investment, so as to ensure that the peak production and stable production periods meet the contract requirements. Key words: overseas oil and gas field, development ideas, technical strategy, development model, contract type, development plan desig

    An evaluation on phase behaviors of gas condensate reservoir in cyclic gas injection

    No full text
    Maintaining the reservoir pressure by gas injection is frequently adopted in the development of gas condensate reservoir. The aim of this work is to investigate the phase behavior of condensate oil and remaining condensate gas in the formation under gas injection. The DZT gas condensate reservoir in East China is taken as an example. The multiple contact calculation based on cell-to-cell method and phase equilibrium calculations based on PR Equation of State (EOS) were utilized to evaluate the displacement mechanism and phase behavior change. The research results show that different pure gas has different miscible mechanism in the displacement of condensate oil: vaporizing gas drive for N2 and CH4; condensing gas drive for CO2 and C2H6. Meanwhile, there is a vaporing gas drive rather than a condensing gas drive for injecting produced gas. When the condensate oil is mixed with 0.44 mole fraction of produced gas, the phase behavior of the petroleum mixture reverses, and the condensate oil is converted to condensate gas. About the reinjection of produced gas, the enrichment ability of hydrocarbons is better than that of no-hydrocarbons. After injecting produced gas, retrograde condensation is more difficult to occur, and the remaining condensate gas develops toward dry gas

    A New Mathematical Model For Heat Radius of Cyclic Superheated Steam Stimulation with Horizontal Wellbore

    No full text
    When superheated steam flows along the horizontal wellbore, it may change to saturated steam at some point of the wellbore. In this paper, to accurately predict the heat radius of cyclic superheated steam stimulation with horizontal wellbore, the distribution of thermophysical properties of superheated steam along the horizontal wellbore is considered. The heating process is divided into 4 stages for superheated steam and 3 stages for saturated steam when the phase change undergoes in the wellbore. On this basis, the mathematical model for heat radius of cyclic superheated steam stimulation with horizontal wellbore was established according to energy conservation principle and Laplace transformation method. The calculation result of the new mathematical model is in good agreement with that of the numerical simulation (CMG STARS) for the same parameters from a specific heavy oil reservoir, which verified the correctness of the new mathematical model. The effect of degree of superheat and the cycle of stimulation are analyzed in detail after the new mathematical model is validated. The results show that the heat radius of superheated zone, steam zone, and hot fluid zone all decrease with horizontal well length and increase with the cycle of stimulation. The higher the degree of superheat is, the farther from the heel of the horizontal wellbore the phase change undergoes. Besides, the radius of superheated zone, steam zone, and hot fluid zone increases with the degree of superheat, but the value increases little at steam zone and hot fluid zone

    Preparation of Polymer Solution for Profile Control and Displacement Using Wastewater with High Ca2+/Mg2+ and Fe2+ Concentrations

    No full text
    In the present study, we used Kalamkas, which is a typical Kazakhstani oilfield, which produces wastewater with high Ca2+/Mg2+ and Fe2+ concentrations, as a case study. We investigated a method for preparing Fe2+ polymer solutions without oxygen isolation under the conditions of salinity >110 × 103 mg/L, Ca2+/Mg2+ concentration >7000 mg/L, and Fe2+ concentration >30 mg/L. Fe2+-resistant groups were grafted onto the molecular chains of a hydrophobically associating polymer prepared using existing synthesis technology to overcome the decrease in apparent viscosity of the polymer solution due to the oxidation of Fe2+ during solution preparation. The experiments showed that PAM-IR with iron-resistant groups can be completely dissolved in the wastewater within 180 min, and can tolerate an NaCl concentration of up to 0.23 × 106 mg/L, a Ca2+ concentration of up to 10 × 103 mg/L, an Mg2+ concentration of up to 9 × 103 mg/L, and a Fe2+ concentration of up to 90 mg/L, with favorable thickening performance and resistances to NaCl, Ca2+, Mg2+, and Fe2+. PAM-IR has good injection performance and can establish a high resistance factor (FR) and residual resistance factor (FRR) to increase the sweep efficiency. Therefore, it is potentially useful for enhancing oil recovery

    Preparation of Polymer Solution for Profile Control and Displacement Using Wastewater with High Ca<sup>2+</sup>/Mg<sup>2+</sup> and Fe<sup>2+</sup> Concentrations

    No full text
    In the present study, we used Kalamkas, which is a typical Kazakhstani oilfield, which produces wastewater with high Ca2+/Mg2+ and Fe2+ concentrations, as a case study. We investigated a method for preparing Fe2+ polymer solutions without oxygen isolation under the conditions of salinity >110 × 103 mg/L, Ca2+/Mg2+ concentration >7000 mg/L, and Fe2+ concentration >30 mg/L. Fe2+-resistant groups were grafted onto the molecular chains of a hydrophobically associating polymer prepared using existing synthesis technology to overcome the decrease in apparent viscosity of the polymer solution due to the oxidation of Fe2+ during solution preparation. The experiments showed that PAM-IR with iron-resistant groups can be completely dissolved in the wastewater within 180 min, and can tolerate an NaCl concentration of up to 0.23 × 106 mg/L, a Ca2+ concentration of up to 10 × 103 mg/L, an Mg2+ concentration of up to 9 × 103 mg/L, and a Fe2+ concentration of up to 90 mg/L, with favorable thickening performance and resistances to NaCl, Ca2+, Mg2+, and Fe2+. PAM-IR has good injection performance and can establish a high resistance factor (FR) and residual resistance factor (FRR) to increase the sweep efficiency. Therefore, it is potentially useful for enhancing oil recovery
    corecore