36 research outputs found
Multi-Spacecraft Autonomous Positioning System
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems
Optimization of Second Fault Detection Thresholds to Maximize Mission POS
In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success
Use of Navigation Beacons to Support Lunar Vehicle Operations
To support a wide variety of lunar missions in a condensed regime, solutions are needed outside of the use of Earth-based orbit determination. This research presents an alternate approach to in-situ navigation through the use of beacons, similar to that used on Earth as well as under technology development efforts. An overview of the current state of navigation aids included as well as discussion of the Lunar Node 1 payload being built at NASA/Marshall Space Flight Center. Expected navigation results of this beacon payload for planned operation from the lunar surface are provided. Applications of navigation beacons to multiple stages of the proposed human lunar landing architecture are given, with initial analysis showing performance gains from the use of this technology. This work provides a starting point for continued analysis and design, laying out the foundation of how navigation beacons can be incorporated into the architecture to enable continued analysis, design, and future expanded capability
Optimization of Second Fault Detection Thresholds to Maximize Mission Probability of Success
In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. The SLS program has also levied requirements relating to the capability of the Inertial Navigation System to detect a second fault. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error due to sensor faults in a purely inertial system can drive the vehicle outside of its operational as-designed environmental and performance envelope. As this performance outside of first fault detections is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design. A top-down approach is utilized to assess vehicle sensitivity to second sensor faults. A wide range of failure scenarios in terms of both fault magnitude and time is used for assessment. The approach also utilizes a schedule to change fault detection thresholds autonomously. These individual values are optimized along a nominal trajectory in order to maximize probability of mission success in terms of system-level insertion requirements while minimizing the probability of false positives. This paper will describe an approach integrating Genetic Algorithms and Monte Carlo analysis to tune the threshold parameters to maximize vehicle resilience to second fault events over an ascent mission profile. The analysis approach and performance assessment and verification will be presented to demonstrate the applicability of this approach to second fault detection optimization to maximize mission probability of success through taking advantage of existing margin
Guidance and Navigation Challenges for a Mars Ascent Vehicle
This work presents studies and analysis in support of a Mars Ascent Vehicle as part of a Martian Sample Return campaign. The vehicle design has been ongoing, with rapid development of a 6 Degree of Freedom simulation to capture full vehicle dispersions and integrated performance of vehicle, guidance, navigation and control. The maturation of this simulation is presented to provide an overview of its capabilities added over the past year of effort. The results describe in detail guidance algorithm development to increase the systems robustness to thrust sensitivities. Navigation performance and sensitivity analysis are included to describe the capabilities of the current design as well as identify primary drivers of insertion performance. Lastly, integrated vehicle 6DOF statistical results are presented to provide insight into the nominal performance of the current vehicle and insight into system-level drivers. Future work is described to outline the continuing maturation and development of the MSR MAV ascent vehicle
Efficient On-Orbit Singularity-Free Geopotential Estimation
The complexity of the geopotential model can heavily impact the navigation error in satellites and spacecraft. Geopotential models of the accuracy needed for spaceflight are too complicated for flight computers to run at the rate needed by the navigation system. There are methods to make the geopotential model more efficient while maintaining the needed accuracy, which include: using an efficient method for the full model, propagating to avoid singularities, and running the full model at a low rate and propagating to the needed rate. These methods can decrease the computational requirement enough to be run by the flight computer at the rate required of the navigation system
Conceptual Design of a Communication-Based Deep Space Navigation Network
As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system
Application of GPS to Enable Launch Vehicle Upper Stage Heliocentric Disposal
To properly dispose of the upper stage of the Space Launch System, the vehicle must perform a burn in Earth orbit to perform a close flyby of the Lunar surface to gain adequate energy to enter into heliocentric space. This architecture was selected to meet NASA requirements to limit orbital debris in the Earth-Moon system. The choice of a flyby for heliocentric disposal was driven by mission and vehicle constraints. This paper describes the SLS mission for Exploration Mission -1, a high level overview of the Block 1 vehicle, and the various disposal options considered. The research focuses on this analysis in terms of the mission design and navigation problem, focusing on the vehicle-level requirements that enable a successful mission. An inertial-only system is shown to be insufficient for heliocentric flyby due to large inertial integration errors from launch through disposal maneuver while on a trans-lunar trajectory. The various options for aiding the navigation system are presented and details are provided on the use of GPS to bound the state errors in orbit to improve the capability for stage disposal. The state estimation algorithm used is described as well as its capability in determination of the vehicle state at the start of the planned maneuver. This data, both dispersions on state and on errors, is then used to develop orbital targets to use for meeting the required Lunar flyby for entering onto a heliocentric trajectory. The effect of guidance and navigation errors on this capability is described as well as the identified constraints for achieving the disposal requirements. Additionally, discussion is provided on continued analysis and identification of system considerations that can drive the ability to integrate onto a vehicle intended for deep space
Optimization of Second Fault Detection Thresholds to Maximize Mission Probability of Success
No abstract availabl
Initial Results of the Software-driven Navigation for Station Experiment
No abstract availabl