38 research outputs found

    Exacerbated inflammatory arthritis in response to hyperactive gp130 signalling is independent of IL-17A

    Get PDF
    Objective Interleukin (IL)-17A producing CD4 T-cells (TH-17 cells) are implicated in rheumatoid arthritis (RA). IL-6/STAT3 signalling drives TH-17 cell differentiation, and hyperactive gp130/STAT3 signalling in the gp130F/F mouse promotes exacerbated pathology. Conversely, STAT1-activating cytokines (eg, IL-27, IFN-γ) inhibit TH-17 commitment. Here, we evaluate the impact of STAT1 ablation on TH-17 cells during experimental arthritis and relate this to IL-17A-associated pathology. Methods Antigen-induced arthritis (AIA) was established in wild type (WT), gp130F/F mice displaying hyperactive gp130-mediated STAT signalling and the compound mutants gp130F/F:Stat1−/− and gp130F/F: Il17a−/− mice. Joint pathology and associated peripheral TH-17 responses were compared. Results Augmented gp130/STAT3 signalling enhanced TH-17 commitment in vitro and exacerbated joint pathology. Ablation of STAT1 in gp130F/F mice (gp130F/F: Stat1−/− ) promoted the hyperexpansion of TH-17 cells in vitro and in vivo during AIA. Despite this heightened peripheral TH-17 cell response, disease severity and the number of joint-infiltrating T-cells were comparable with that of WT mice. Thus, gp130-mediated STAT1 activity within the inflamed synovium controls T-cell trafficking and retention. To determine the contribution of IL-17A, we generated gp130F/F:IL-17a−/− mice. Here, loss of IL-17A had no impact on arthritis severity. Conclusions Exacerbated gp130/STAT-driven disease in AIA is associated with an increase in joint infiltrating T-cells but synovial pathology is IL-17A independent

    A comparison of doctoral training in biomedicine and medicine for some UK and Scandinavian graduate programmes: learning from each other

    Get PDF
    Although the historical bases for graduate training in the United Kingdom (UK) and Scandinavia both stem from the original concept developed by von Humboldt, and both award a ‘PhD degree', their paths have diverged. There are thus significant differences in the manner in which graduate training is organised. To analyse these differences, two UK graduate programmes (School of Medicine, Cardiff University; Institute of Integrative Biology, University of Liverpool) and two Scandinavian graduate schools (Faculty of Medicine and Dentistry, University of Bergen; Karolinska Institutet, Stockholm) completed a Self‐evaluation questionnaire developed by Organisation of PhD Education in Biomedicine and Health Sciences in the European System (ORPHEUS)). Analysis of the completed questionnaires shows differences concerning requirements for admission, the training content of PhD programmes, the format of the PhD thesis, how the thesis is assessed and the financial model. All programmes recognise that PhD training should prepare for employment both inside and outside of academia, with emphasis on transferable skills training. However, the analysis reveals some fundamental differences in the direction of graduate programmes in the UK and Scandinavia. In the UK, graduate programmes are directed primarily towards teaching PhD students to do research, with considerable focus on practical techniques. In Scandinavia, the focus is on managing projects and publishing papers. To some extent, the differences lead to a lack of full recognition of each other's theses as a basis for doing a postdoc. This paper describes the basis for these differences and compares the two approaches and points to areas in which there is, or might be, convergence

    Inhibition of CCL3 abrogated precursor cell fusion and bone erosions in human osteoclast cultures and murine collagen-induced arthritis

    Get PDF
    Objective Macrophage inflammatory protein 1-alpha (CCL3) is a chemokine that regulates macrophage trafficking to the inflamed joint. The agonistic effect of CCL3 on osteolytic lesions in patients with multiple myeloma is recognized; however, its role in skeletal damage during inflammatory arthritis has not been established. The aim of the study was to explore the role of osteoclast-associated CCL3 upon bone resorption, and to test its pharmacological blockade for protecting against bone pathology during inflammatory arthritis. Methods CCL3 production was studied during osteoclast differentiation from osteoclast precursor cells: human CD14-positive mononuclear cells. Mice with CIA were treated with an anti-CCL3 antibody. The effect of CCL3 blockade through mAb was studied through osteoclast number, cytokine production and bone resorption on ivory disks, and in vivo through CIA progression (clinical score, paw diameter, synovial inflammation and bone damage). Results Over time, CCL3 increased in parallel with the number of osteoclasts in culture. Anti-CCL3 treatment achieved a concentration-dependent inhibition of osteoclast fusion and reduced pit formation on ivory disks (P ⩽ 0.05). In CIA, anti-CCL3 treatment reduced joint damage and significantly decreased multinucleated tartrate-resistant acid phosphatase-positive osteoclasts and erosions in the wrists (P < 0.05) and elbows (P < 0.05), while also reducing joint erosions in the hind (P < 0.01) and fore paws (P < 0.01) as confirmed by X-ray. Conclusion Inhibition of osteoclast-associated CCL3 reduced osteoclast formation and function whilst attenuating arthritis-associated bone loss and controlling development of erosion in murine joints, thus uncoupling bone damage from inflammation. Our findings may help future innovations for the diagnosis and treatment of inflammatory arthritis

    Interferon-γ inhibits interleukin-1β-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis

    Get PDF
    Introduction: The first few months after symptom onset represents a pathologically distinct phase in rheumatoid arthritis (RA). We used relevant experimental models to define the pathological role of interferon-γ (IFN-γ) during early inflammatory arthritis. Methods: We studied IFN-γ's capacity to modulate interleukin-1β (IL-1β) induced degenerative responses using RA fibroblast-like synoviocytes (FLS), a bovine articular cartilage explant (BACE)/RA-FLS co-culture model and an experimental inflammatory arthritis model (murine antigen-induced arthritis (AIA)). Results: IFN-γ modulated IL-1β driven matrix metalloproteinases (MMP) synthesis resulting in the down-regulation of MMP-1 and MMP-3 production in vitro. IFN-γ did not affect IL-1β induced tissue inhibitor of metalloproteinase-1 (TIMP-1) production by RA FLS but skewed the MMP/TIMP-1 balance sufficiently to attenuate glycosaminoglycan-depletion in our BACE model. IFN-γ reduced IL-1β expression in the arthritic joint and prevented cartilage degeneration on Day 3 of AIA. Conclusions: Early therapeutic intervention with IFN-γ may be critical to orchestrate tissue-protective responses during inflammatory arthritis

    AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis

    Get PDF
    Objectives Synovial fluid glutamate concentrations increase in arthritis. Activation of kainate (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) increase interleukin-6 (IL-6) release and cause arthritic pain, respectively. We hypothesised that AMPA and KA GluRs are expressed in human arthritis, and that intra-articular NBQX (AMPA/KA GluR antagonist) prevents pain and pathology in antigen-induced arthritis (AIA). Methods GluR immunohistochemistry was related to synovial inflammation and degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). A single intra-articular NBQX injection was given at induction, and knee swelling and gait of AIA and AIA+NBQX rats compared over 21 days, before imaging, RT-qPCR, histology and immunohistochemistry of joints. Effects of NBQX on human primary osteoblast (HOB) activity were determined. Results AMPAR2 and KA1 immunolocalised to remodelling bone, cartilage and synovial cells in human OA and RA, and rat AIA. All arthritic tissues showed degradation and synovial inflammation. NBQX reduced GluR abundance, knee swelling (p<0.001, days 1–21), gait abnormalities (days 1–2), end-stage joint destruction (p<0.001), synovial inflammation (p<0.001), and messenger RNA expression of meniscal IL-6 (p<0.05) and whole joint cathepsin K (p<0.01). X-ray and MRI revealed fewer cartilage and bone erosions, and less inflammation after NBQX treatment. NBQX reduced HOB number and prevented mineralisation. Conclusions AMPA/KA GluRs are expressed in human OA and RA, and in AIA, where a single intra-articular injection of NBQX reduced swelling by 33%, and inflammation and degeneration scores by 34% and 27%, respectively, exceeding the efficacy of approved drugs in the same model. AMPA/KA GluR antagonists represent a potential treatment for arthritis

    Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis

    Get PDF
    Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment

    Regulation of early cartilage destruction in inflammatory arthritis by death receptor 3

    Get PDF
    Objective: To investigate the role of death receptor 3 (DR-3) and its ligand tumor necrosis factor–like molecule 1A (TL1A) in the early stages of inflammatory arthritis. Methods: Antigen-induced arthritis (AIA) was generated in C57BL/6 mice deficient in the DR-3 gene (DR3−/−) and their DR3+/+ (wild-type) littermates by priming and intraarticular injection of methylated bovine serum albumin. The joints were sectioned and analyzed histochemically for damage to cartilage and expression of DR3, TL1A, Ly-6G (a marker for neutrophils), the gelatinase matrix metalloproteinase 9 (MMP-9), the aggrecanase ADAMTS-5, and the neutrophil chemoattractant CXCL1. In vitro production of MMP-9 was measured in cultures from fibroblasts, macrophages, and neutrophils following the addition of TL1A and other proinflammatory stimuli. Results: DR3 expression was up-regulated in the joints of wild-type mice following generation of AIA. DR3−/− mice were protected against cartilage damage compared with wild-type mice, even at early time points prior to the main accumulation of Teff cells in the joint. Early protection against AIA in vivo correlated with reduced levels of MMP-9. In vitro, neutrophils were major producers of MMP-9, while neutrophil numbers were reduced in the joints of DR3−/− mice. However, TL1A neither induced MMP-9 release nor affected the survival of neutrophils. Instead, reduced levels of CXCL1 were observed in the joints of DR3−/− mice. Conclusion: DR-3 drives early cartilage destruction in the AIA model of inflammatory arthritis through the release of CXCL1, maximizing neutrophil recruitment to the joint and leading to enhanced local production of cartilage-destroying enzymes

    Prevention of child behavior problems through universal implementation of a group behavioral family intervention.

    Get PDF
    The aim of this mental health promotion initiative was to evaluate the effectiveness of a universally delivered group behavioral family intervention (BFI) in preventing behavior problems in children. This study investigates the transferability of an efficacious clinical program to a universal prevention intervention delivered through child and community health services targeting parents of preschoolers within a metropolitan health region. A quasiexperimental two-group (BFI, n=804 vs. Comparison group, n=806) longitudinal design followed preschool aged children and their parents over a 2-year period. BFI was associated with significant reductions in parent-reported levels of dysfunctional parenting and parent-reported levels of child behavior problems. Effect sizes on child behavior problems ranged from large (.83) to moderate (.47). Positive and significant effects were also observed in parent mental health, marital adjustment, and levels of child rearing conflict. Findings are discussed with respect to their implication for significant population reductions in child behavior problems as well as the pragmatic challenges for prevention science in encouraging both the evaluation and uptake of preventive initiatives in real world settings

    Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis

    Get PDF
    Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment
    corecore