106 research outputs found

    Decision Making Practices In Universities Of Pakistan

    Get PDF
    Decision making can be regarded as an outcome of mental processes (cognitive process) leading to the selection of a course of action among several alternatives. Every decision making process produces a final choice. The output can be an action or an opinion. The purpose of this descriptive survey was to explore the Decision making practices in administrative and academic matters in the universities of Pakistan. A sample of nineteen universities was selected by applying stratified random sampling technique.  The respondents, i-e members of university bodies; teachers and administrative officers were selected randomly. Three questionnaires constructed on Likert’s five-point scale were used for data collection. Data was tabulated and analyzed by using the F-ratio and Chi-square. The survey results revealed that overall decision-making practices in the universities were found unsatisfactory and, most of the decisions were made without application of management decision-making techniques

    Sorptivity of self-compacting concrete containing fly ash and silica fume

    Get PDF
    This paper presents the surface water absorption of self-compacting concrete (SCC) containing fly ash and silica fume using sorptivity test. Ordinary Portland cement was partially replaced by various combinations of fly ash and silica fume. Test results show that the presence of fly ash and silica fume significantly reduce the surface water absorption of self-compacting concrete at a water-binder ratio of 0.38. When only fly ash is used to partially replace Ordinary Portland cement, a more noticeable reduction in sorptivity is found when the fly ash content is greater than 20%

    Fontan-Associated Dyslipidemia

    Get PDF
    Background Hypocholesterolemia is a marker of liver disease, and patients with a Fontan circulation may have hypocholesterolemia secondary to Fontan-associated liver disease or inflammation. We investigated circulating lipids in adults with a Fontan circulation and assessed the associations with clinical characteristics and adverse events. Methods and Results We enrolled 164 outpatients with a Fontan circulation, aged ≥ 18 years, in the Boston Adult Congenital Heart Disease Biobank and compared them with 81 healthy controls. The outcome was a combined outcome of nonelective cardiovascular hospitalization or death. Participants with a Fontan (median age, 30.3 [interquartile range, 22.8–34.3 years], 42% women) had lower total cholesterol (149.0±30.1 mg/dL versus 190.8±41.4 mg/dL, P\u3c 0.0001), low‐density lipoprotein cholesterol (82.5±25.4 mg/dL versus 102.0±34.7 mg/dL, P\u3c 0.0001), and high‐density lipoprotein cholesterol (42.8±12.2 mg/dL versus 64.1±16.9 mg/dL, P\u3c 0.0001) than controls. In those with a Fontan, high‐density lipoprotein cholesterol was inversely correlated with body mass index (r=−0.30, P\u3c 0.0001), high‐sensitivity C‐reactive protein (r=−0.27, P=0.0006), and alanine aminotransferase (r=−0.18, P=0.02) but not with other liver disease markers. Lower high‐density lipoprotein cholesterol was independently associated with greater hazard for the combined outcome adjusting for age, sex, body mass index, and functional class (hazard ratio [HR] per decrease of 10 mg/dL, 1.37; 95% CI, 1.04–1.81 [P=0.03]). This relationship was attenuated when log high‐sensitivity C‐reactive protein was added to the model (HR, 1.26; 95% CI, 0.95–1.67 [P=0.10]). Total cholesterol, low‐density lipoprotein cholesterol, and triglycerides were not associated with the combined outcome. Conclusions The Fontan circulation is associated with decreased cholesterol levels, and lower high‐density lipoprotein cholesterol is associated with adverse outcomes. This association may be driven by inflammation. Further studies are needed to understand the relationship between the severity of Fontan‐associated liver disease and lipid metabolism

    Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd B oblique stagnation flow with a non-Fourier heat flux model

    Get PDF
    Reactive magnetohydrodynamic (MHD) flows arise in many areas of nuclear reactor transport. Working fluids in such systems may be either Newtonian or non-Newtonian. Motivated by these applications, in the current study, a mathematical model is developed for electrically-conducting viscoelastic oblique flow impinging on stretching wall under transverse magnetic field. A non-Fourier Cattaneo-Christov model is employed to simulate thermal relaxation effects which cannot be simulated with the classical Fourier heat conduction approach. The Oldroyd-B non-Newtonian model is employed which allows relaxation and retardation effects to be included. A convective boundary condition is imposed at the wall invoking Biot number effects. The fluid is assumed to be chemically reactive and both homogeneous-heterogeneous reactions are studied. The conservation equations for mass, momentum, energy and species (concentration) are altered with applicable similarity variables and the emerging strongly coupled, nonlinear non-dimensional boundary value problem is solved with robust well-tested Runge-Kutta-Fehlberg numerical quadrature and a shooting technique with tolerance level of 10−4. Validation with the Adomian decomposition method (ADM) is included. The influence of selected thermal (Biot number, Prandtl number), viscoelastic hydrodynamic (Deborah relaxation number), Schmidt number, magnetic parameter and chemical reaction parameters, on velocity, temperature and concentration distributions are plotted for fixed values of geometric (stretching rate, obliqueness) and thermal relaxation parameter. Wall heat transfer rate (local heat flux) and wall species transfer rate (local mass flux) are also computed and it is observed that local mass flux increases with strength of heterogeneous reactions whereas it decreases with strength of homogeneous reactions. The results provide interesting insights into certain nuclear reactor transport phenomena and furthermore a benchmark for more general CFD simulations

    Salt stress proteins in plants: An overview

    Get PDF
    Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops

    Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption

    Get PDF
    A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free convection boundary layer flow of an incompressible third grade viscoelastic fluid past an isothermal inverted cone in the presence of magnetohydrodynamic, thermal radiation and heat generation/absorption. The transformed conservation equations for linear momentum, heat and mass are solved numerically subject to the realistic boundary conditions using the second-order accurate implicit finite-difference Keller Box Method. The numerical code is validated with previous studies. Detailed interpretation of the computations is included. The present simulations are of interest in chemical engineering systems and solvent and low-density polymer materials processing

    Survival of patients treated with intra-aortic balloon counterpulsation at a tertiary care center in Pakistan – patient characteristics and predictors of in-hospital mortality

    Get PDF
    BACKGROUND: Intra-aortic balloon counterpulsation (IABC) has an established role in the treatment of patients presenting with critical cardiac illnesses, including cardiogenic shock, refractory ischemia and for prophylaxis and treatment of complications of percutaneous coronary interventions (PCI). Patients requiring IABC represent a high-risk subset with an expected high mortality. There are virtually no data on usage patterns as well as outcomes of patients in the Indo-Pakistan subcontinent who require IABC. This is the first report on a sizeable experience with IABC from Pakistan. METHODS: Hospital charts of 95 patients (mean age 58.8 (± 10.4) years; 78.9% male) undergoing IABC between 2000–2002 were reviewed. Logistic regression was used to determine univariate and multivariate predictors of in-hospital mortality. RESULTS: The most frequent indications for IABC were cardiogenic shock (48.4%) and refractory ischemia (24.2%). Revascularization (surgical or PCI) was performed in 74 patients (77.9%). The overall in-hospital mortality rate was 34.7%. Univariate predictors of in-hospital mortality included (odds ratio [95% CI]) age (OR 1.06 [1.01–1.11] for every year increase in age); diabetes (OR 3.68 [1.51–8.92]) and cardiogenic shock at presentation (OR 4.85 [1.92–12.2]). Furthermore, prior CABG (OR 0.12 [0.04–0.34]), and in-hospital revascularization (OR 0.05 [0.01–0.189]) was protective against mortality. In the multivariate analysis, independent predictors of in-hospital mortality were age (OR 1.13 [1.05–1.22] for every year increase in age); diabetes (OR 6.35 [1.61–24.97]) and cardiogenic shock at presentation (OR 10.0 [2.33–42.95]). Again, revascularization during hospitalization (OR 0.02 [0.003–0.12]) conferred a protective effect. The overall complication rate was low (8.5%). CONCLUSIONS: Patients requiring IABC represent a high-risk group with substantial in-hospital mortality. Despite this high mortality, over two-thirds of patients do leave the hospital alive, suggesting that IABC is a feasible therapeutic device, even in a developing country

    Analytical approach for entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Get PDF
    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e. high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT- nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pump
    corecore