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Salinity stress is considered the most devastating abiotic stress for crop

productivity. Accumulating different types of soluble proteins has evolved as

a vital strategy that plays a central regulatory role in the growth and

development of plants subjected to salt stress. In the last two decades,

efforts have been undertaken to critically examine the genome structure and

functions of the transcriptome in plants subjected to salinity stress. Although

genomics and transcriptomics studies indicate physiological and biochemical

alterations in plants, it do not reflect changes in the amount and type of

proteins corresponding to gene expression at the transcriptome level. In

addition, proteins are a more reliable determinant of salt tolerance than

simple gene expression as they play major roles in shaping physiological

traits in salt-tolerant phenotypes. However, little information is available on

salt stress-responsive proteins and their possible modes of action in conferring

salinity stress tolerance. In addition, a complete proteome profile under normal

or stress conditions has not been established yet for any model plant species.

Similarly, a complete set of low abundant and key stress regulatory proteins in

plants has not been identified. Furthermore, insufficient information on post-

translational modifications in salt stress regulatory proteins is available.

Therefore, in recent past, studies focused on exploring changes in protein

expression under salt stress, which will complement genomic, transcriptomic,

and physiological studies in understanding mechanism of salt tolerance in

plants. This review focused on recent studies on proteome profiling in plants

subjected to salinity stress, and provide synthesis of updated literature about
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how salinity regulates various salt stress proteins involved in the plant salt

tolerance mechanism. This review also highlights the recent reports on

regulation of salt stress proteins using transgenic approaches with enhanced

salt stress tolerance in crops.
KEYWORDS

differentially expressed proteins, omics, dehydrins, osmotin, ion transporters, LEA
proteins, receptor-like kinases, photosynthesis
1 Introduction

Salinity is a major environmental stressor, particularly in arid

and semi-arid regions of the world, causing substantial crop losses

(Ashraf and Foolad, 2013; Rengasamy, 2016; Mujeeb-Kazi et al.,

2019; Naeem et al., 2020; Zulfiqar and Ashraf, 2021; Ashraf and

Munns, 2022). According to some reliable estimates, more than

6% of the world’s land is considered saline (Wicke et al., 2011;

Rengasamy, 2016), and of the total irrigated lands, 20% are saline,

resulting in estimated agricultural losses of US$27.3 billion

annually (Munns et al., 2020a). The extent of saline agricultural

land continues to increase mainly due to poor management

practices (Chartres and Noble, 2015; Rengasamy, 2016), as do

the yield gaps between demand and production. Moreover,

agricultural production must increase to feed the rapidly

increasing world population estimated to be 9.6 billion by 2050

(Fischer et al., 2009; Arzani and Ashraf, 2016; Fischer et al., 2017;

Zafar et al., 2017; Hickey et al., 2019). Efficient utilization of

marginal saline lands for crop production could help in meeting

demand for crop productivity (Munns and Gilliham, 2015).

Another option could be developing salt-tolerant crop plants

using conventional breeding or advanced molecular biology-

based techniques that can sustain growth on salt-affected soils

(Flowers, 2004; Flowers et al., 2010; Ashraf and Foolad, 2013;

Flowers et al., 2019). However, success in developing salt-tolerant

crop plants has not been particularly successful, mainly due to a

poor understanding of salt tolerance mechanisms in plants

(Flowers et al., 2010; Mujeeb-Kazi et al., 2019; Ashraf and

Munns, 2022). Many scientists thought that salt-tolerant crop

plants could be engineered using one gene with one protein acting

as a master switch or regulator for a wide variety of physiological

and biochemical processes, such as pyrophosphatase (AVP1)

(Gaxiola et al., 2016), WRKY transcription factors (Jiang et al.,

2017; Zhao et al., 2019b), and DREB (Lata and Prasad, 2011).

Others thought that specific proteins controlling adaptation or

developmental processes to tolerate, avoid or minimize the

influence of salt stress in crop plants could be used in

traditional breeding or transgenic approaches to increase plant

growth and yield on salt-affected land (Munns, 2005; Ashraf et al.,

2008; Roy et al., 2014; Dissanayake et al., 2022).
02
It is widely known that salt stress reduces crop growth

through osmotic stress, specific ion toxicity, nutritional

imbalance, and impaired hormonal regulation (Munns and

Tester, 2008; Zörb et al., 2019). Plants adapt to salinity stress

by regulating the uptake and transport of Na+ and K+ ions,

activating enzymes to scavenge reactive oxygen species (ROS),

and improving osmotic adjustment (Kalaji and Pietkiewicz,

1993; Ashraf, 2009; Athar and Ashraf, 2009; Munns et al.,

2020b). Proteins regulate these processes under normal and

salt stress conditions (Li et al., 2017b; Li et al., 2017c; Iqbal

et al., 2019), which are responsible for regulating cellular

metabolism, organic and inorganic solute transport, water

transport, osmoregulation, redox balance, sensing and

signalling, hormonal balance, cell division, cell enlargement,

and growth and development (Zhang et al., 2012a; Li et al.,

2017c). In this review, we discussed the effect of salt stress on

total soluble proteins, composition of proteins of different

molecular weights, proteins related to various physiological

and biochemical processes in halophytes and glycophytes or

salt tolerant and salt sensitive cultivars of same species (Bose

et al., 2017; Negrão et al., 2017; Pailles et al., 2020). Due to non-

availability of sophisticated techniques for proteins, in mid and

late 20th century, only total soluble proteins and one-

dimensional SDS-PAGE were used. However, in 21st century,

2-D electrophoresis coupled with LC-MS techniques at various

platforms (gel-based, with or without label) are being used to

describe protein profiles and post-translational modifications.

The evolution in use of diverse techniques in proteome profiling

under salt has also been reviewed. This review presented recent

knowledge about functional specificity of range of promising

candidate proteins in response to salt stress, which will help in

devising strategies to improve salt tolerance in crops.
2 Salt stress proteins: A general
account

Several proteins accumulate in plants in response to salinity

stress. Plant tissues normally respond to salt stress by degrading

proteins or producing abundant salt stress related proteins
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(Wang et al., 2015b). Moreover, more proteins have been

observed in salt-tolerant cultivars than salt-sensitive cultivars

of many crops, including sunflower, barley, rice, and wheat and

references therein). Thus, the quality and type of proteins may

be more important than the quantity of total soluble proteins for

salt tolerance (Dissanayake et al., 2022). For example, Ashraf and

O'Leary (1999) demonstrated that salt-tolerant wheat cultivar S-

24 had fewer total soluble proteins than salt-sensitive Potohar.

Moreover, SDS-PAGE revealed that both cultivars had similar

protein expression patterns. However, Potohat had lower

expression of 29 and 48 kDa proteins than S-24. With

advanced molecular biology-based techniques, such as 2-D

electrophoresis, MALDI-TOFF, and LC-MS, complete protein

profiling can be performed in salt-stressed plants. Bioinformatics

tools can further help identify specific salt-stress proteins.

Changes in protein expression under salt stress are mainly

associated with several biological functions and post-

transcriptional and post-translational changes (Chiconato

et al., 2021; Jha, 2022). These proteins are directly involved in

determining new phenotypes that can adapt to salt-stressed

environments by contributing to vital metabolic processes.

Thus, the contribution of specific proteins is more important

for salt tolerance mechanisms than protein quantity.

Based on their functions in salinity or general stress

tolerance, these proteins are grouped as salt stress and stress-

associated proteins (Figure 1). Salt stress proteins accumulate

only in response to salt stress, whereas stress-associated proteins

accumulate under any stress.

It is well-known that salt stress has a similar osmotic effect to

drought stress in plants. Soluble proteins that accumulate in

plants under salt stress play a key role in osmoregulation,

including osmotin in Mesembryanthemum crystallinum

(Thomas and Bohnert, 1993; Qun et al., 2017) and tomato

(Goel et al., 2010), salt shock protein in sugar cane (Gomathi

and Vasantha, 2006), germin in barley (Hurkman et al., 1991),
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and osmotin-like proteins in sesame (Kosová et al., 2013;

Chowdhury et al., 2017; Qun et al., 2017). Some proteins are

enzyme complexes responsible for regulating the biosynthesis of

soluble sugars, which play a role in osmoregulation under salt

stress (Zhao et al., 2019a). For example, salt stress reduced

fructose-2,6-bisphosphatase levels in salt-stressed rice leaves,

increasing sucrose accumulation, which regulated cell

osmolarity and thus improved salt tolerance (Udomchalothorn

et al., 2009). While many proteins are not involved in

osmoregulation, they protect cell membranes, structural

proteins, and enzymes from Na+ toxicity and Na+-induced

dehydration, e.g., heat shock proteins (HSPs) and late

embryogenesis abundant (LEA) proteins (Chourey et al., 2003;

Park et al., 2005; Song and Ahn, 2011; Derevyanchuk et al.,

2015). Recently, Rodriguez et al. (2021) reported that salt stress-

induced post-translational modifications in 245 proteins by

phosphorylation and in 35 proteins by lysine acetylation

played a significant role in salt tolerance. They further added

that changes in abundance of 107 proteins involved in various

metabolic pathways such as osmo-protection, sulfur metabolism

of Arabidopsis thaliana could be candidate proteins for salt

tolerance. Similarly, maintenance of ion homeostasis is a key

component of salt tolerance, regulated by several membrane

proteins responsible for ion transport, including K+ and Na+

channels and pumps (Huang et al., 2008; Ji et al., 2013; Huang

et al., 2020), and transport-facilitating cytosolic proteins

involved in intra-cellular communication, such as CIPK6 (Roy

et al., 2013). Such proteins increase when plants are exposed to

salt stress (Ji et al., 2013; Qun et al., 2017; Luo et al., 2018; Ma

et al., 2019).

Some proteins play a dynamic role in sensing and conferring

salt tolerance, including receptor-like protein kinases (RLKs)

(Yang et al., 2010; Ye et al., 2017) and primary cell wall ‘sensors’

such as caffeoyl-CoA O-methyltransferase (COMT) (Wang

et al., 2019b). While working with salt-tolerant and salt-

sensitive rice cultivars (FL530-IL, KDML105), Saeng-Ngam

et al. (2012) found 24 and seven-fold increase in transcript

and protein abundance of calmodulin protein (OsCam1-1)

within 30 minutes. In addition, over-expression of calmodulin

protein in OsCam1-1 rice transgenic plants showed a greater salt

tolerance, which indicated that OsCam1-1 act as salt

sensor protein.

Different cellular organelles possess different types of

proteins that play various roles in metabolism (Jacoby et al.,

2011; Bose et al., 2017; Luo et al., 2017; Goussi et al., 2021). For

example, chloroplasts contain a myriad of proteins (e.g.,

thylakoidal photosystem II, cytochrome b6-f complex, iron-

sulfur proteins, oxygen-evolving enhancer proteins (OEE),

photosystems-I, ATP synthase) and stromal proteins (e.g.,

ribulose-1,5-bisphosphate carboxylase (rubisco) and fructose-

bisphosphate aldolase (pFBA)) (Meng et al., 2016a; Xu et al.,

2016; Yousuf et al., 2016; Suo et al., 2017) that are integral parts

of key metabolic processes. Similarly, various proteins have been
FIGURE 1

Schematic representation of physiological and biochemical
events in plants exposed to salt stress over time and the salt
stress proteins expressed in different plant parts to execute the
salinity stress tolerance mechanism.
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identified in mitochondria under salt stress, including Mn-

superoxide dismutase (Mn-SOD) and oxidase (AOX) (Jacoby

et al., 2011; Wojtyla et al., 2013; Che-Othman et al., 2017; Goussi

et al., 2021). Likewise, vacuoles play a vital role in maintaining

ion homeostasis, osmotic adjustment, and cell turgor under salt

stress (Barkla et al., 2009; Barkla et al., 2013a; Barkla et al.,

2013b). Barkla et al. (2009) reported that salt stress altered

tonoplast-associated glycolytic enzymes, such as aldolase

(ALDO), enolase (ENO), V-ATPase, and H-ATPase in

Mesembryanthemum crystallinum and upregulated H+-pump

activity to maintain ion homeostasis. The endoplasmic

reticulum (ER) is involved in mediating salt tolerance through

calcium ion (Ca2+) homeostasis, lipid metabolism and synthesis,

and the folding, assembly, transport, and modification of

secretory and transmembrane proteins responsible for sensing

environmental cues (Liu and Li, 2019; Park and Park, 2019; Yu

et al., 2019). For example, Wang et al. (2011) reported that salt

stress accumulated unfolded proteins in ER in Arabidopsis

plants. Similarly, Zhan et al. (2019) found 317 of 5,774

proteins were differentially expressed in salt stressed okra

(Abelmoschus esculentus L.), with most associated with

‘response to stress’ and ‘protein processing in the ER’. Zhu

et al. (2019) demonstrated that an ER protein, ZmSep15‐like‐2,

which interacts with ZmUGGT1 (UDP‐glucose: glycoprotein

glucosyltransferase1, UGGT1) induced salt tolerance in

Arabidopsis thaliana by mitigating salt-induced oxidative

stress. Moreover, the authors revealed that interrupting this

interaction caused salt sensitivity in Arabidopsis plants. Thus,

each cellular compartment comprises specific proteins that

undergo differential regulation on exposure to salt stress.

However, a protein isolated from one species may have

different functional capabilities than that in other plant

species. For example, significant genetic diversity exists in the

amino acid sequence of selective pore-loops in the HKT1 gene

family with variable capability to induce salt tolerance in plants

(Shohan et al., 2019; Huang et al., 2020; Dissanayake et al., 2022).

Protein profiling and their characterization under salt stress with

different physio-biochemical functions will provide more

information about candidate proteins (Figure 1). Next, we

discuss different types of proteins and their physio-

biochemical functions under salt stress.
3 How stress proteins enable plants
to resist salt stress

Salt stress affects plant growth and development, and plants

have evolved intricate mechanisms to cope with these

environmental cues. Successfully executing plant stress

tolerance processes requires coordinated activity between each

component (Morton et al., 2019; Pailles et al., 2020; Nguyen

et al., 2022). For example, salt stress causes ROS generation and

changes the cellular redox balance, affecting cytosolic Ca2+ by
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activating calcium channels, an activity connected to Ca2

+-dependent sensing and signalling pathways. Plants convert

this salt stress signal by activating another group of salt stress

proteins (protein kinases and phosphatases) to trigger target

proteins (transcription factors or switches) in different metabolic

networks, such as biosynthetic enzymes for different

phytohormones, enzymes for nutrient metabolism (e.g., N

metabolism), enzymes and cell wall proteins for cell division

and enlargement, enzymes for carbohydrate metabolism in

photosynthesis and respiration, and proteins for regulating

plant growth and development, such as transcription factors in

the MADS-box class for flowering (Yokthongwattana et al.,

2012; Long et al., 2016; Tan et al., 2016; Jusovic et al., 2018;

Nguyen et al., 2022). In the cross-talk between different signaling

networks, various salt-stress proteins regulate osmoregulation

and ion transport and compartmentalize toxic ions in the

vacuole. Such activities require the coordinated activity of

vesicles and proteins trafficking in different cellular organelles

(Nam et al., 2012; Wang et al., 2015b; Zhao et al., 2018; Gan

et al., 2021). Thus, plants likely express specific proteins to

perform particular functions (Figure 1). The next section

discusses the different types of salt stress proteins.
3.1 Salt stress proteins involved in
different metabolisms

Plants reprogram their metabolism to enhance salinity

tolerance (Barajas-Lopez et al., 2018; Jardak et al., 2021) by

using specific pathways that are salt stress imprints (Schwachtje

et al., 2019; Zhang et al., 2022). For example, two inbred maize

lines had 57 differentially expressed proteins under salt stress,

related to energy metabolism, carbohydrate metabolism,

antioxidant system, secondary metabolite biosynthesis, protein

refolding, protein translation, and transcriptional regulation.

This specific network of metabolic pathways can be used as

salt stress imprints (Cheng et al., 2014). Such changes in

metabolism are due to salt stress sensor proteins and

metabolic biosynthesis enzymes directly involved in the

acquisition of salinity tolerance (Hey et al., 2009; Barajas-

Lopez et al., 2018; Yang et al., 2019; Jha et al., 2022).

3.1.1 Salt stress proteins involved in nitrogen
metabolism

Several studies have demonstrated that SnRK kinases sense

the cellular energy state, activating the biosynthesis of proline

and soluble sugars such as sucrose, trehalose, and fructans that

can stabilize cellular structures under salt stress (Figueroa and

Lunn, 2016; Baena-González and Hanson, 2017; Barajas-Lopez

et al., 2018; Belghith et al., 2022). Proline accumulation in salt-

stressed plants is mainly associated with de novo synthesis from

glutamate and Nmetabolism (Zulfiqar and Ashraf, 2022), e.g., in

watermelon (Yang et al., 2013) and cucumber (Shao et al., 2015).
frontiersin.org

https://doi.org/10.3389/fpls.2022.999058
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Athar et al. 10.3389/fpls.2022.999058
While plants can uptake N as nitrate (NO3
–) or ammonium

(NH4
+), nitrates are the main source of nitrogen for agricultural

productivity (Taiz et al., 2015). Therefore, nitrate uptake by

nitrate transporters and its transport are sensitive to salinity

stress (Flores et al., 2000; Flores et al., 2004). Similarly, NH4
+

assimilation is affected by salt stress, affecting key N metabolic

pathways such as the biosynthesis of amino acids, protein, and

secondary metabolites (Popova et al., 2002; Debouba et al.,

2006). The assimilated N from NO3
–or NH4

+ sources is

invested in structural proteins related to plant photosynthetic

machinery. All N uptake, transport, and metabolism processes

impact photosynthetic activity and plant growth under abiotic

stress, including salt stress (Chen et al., 2012). For example,

while assessing the impact of NO3
– and NH4

+ sources on

sunflower growth and photosynthetic activity, Ashraf (1999)

found that NH4
+-N inhibited the growth of non-stressed

sunflower plants, while NO3
–N had a greater inhibitory effect

on salt-stressed plants; these inhibitory effects were associated

with an inhibited photosynthetic rate, suggesting that N

metabolism is linked to C metabolism. Similarly, Tian et al.

(2022) found the similar findings with a leguminous tree species

Sophora japonica. However, they reasoned that over-expression

of N-assimilation enzymes like nitrate reductase, glutamine

synthase, nitrate transporters etc. While assessing effects of salt

stress on proteome changes in halophyte Cakile maritima

Belghith et al. (2022) found changes in protein expression

related to N-metabolism played a major role in degree of salt

tolerance. Thus, changes in the proteins associated with N and C

metabolism may alter the degree of salt tolerance in plants.

Plants comprise low- and high-affinity nitrate transporter

families, namely NRT1 and NRT2, which sense soil nitrate

concentrations via a phosphorylation dephosphorylation

mechanism (Tsay et al., 2007). Decreased expression or

disruption in their function due to abiotic stress can reduce

nitrate uptake in plants (Li et al., 2007). Nitrates taken up into

roots are transported via two long-distance nitrate transporters

(NRT1.5 and NRT1.8) to leaf mesophyll cells and assimilated in

chloroplasts (Li et al., 2010). The NRT1.5 nitrate transporter is

expressed in the root pericycle cells, while NRT1.8 is expressed

mainly in xylem parenchyma cells. However, they both transport

nitrates from roots to shoots (Lin et al., 2008; Li et al., 2010; Meng

et al., 2016b; Ashraf et al., 2018). Nitrate assimilation is an energy-

intensive process. Plants transport nitrates from roots to shoots,

where photosynthetic reductants such as ATP, NADPH, and Fd

are involved in nitrate assimilation; thus, shoot nitrate

assimilation is more efficient than root nitrate assimilation (Taiz

et al., 2015). Several studies have shown that abiotic stresses,

including salt stress, reallocate nitrates to roots by downregulating

NRT1.5 and NRT1.8 transporters (Li et al., 2010; Chen et al., 2012;

Ashraf et al., 2018). In addition, functional disruption of NRT1.5

in nrt1.5 mutants of Arabidopsis thaliana plants changed the

expression of salt-stressed marker genes, particularly those

regulating Na+ distribution (e.g., HKT1 and SOS1) and osmolyte
Frontiers in Plant Science 05
synthesis (e.g., P5CS1 and AtPCS1) (Chen et al., 2012). Thus,

changes in the shoot and root N assimilation patterns, due to the

availability of different N sources or salt stress, change the degree

of salt tolerance in plants.

3.1.2 Salt stress proteins involved in
photosynthesis and carbohydrate metabolism

Carbon or carbohydrate metabolism occurs in the

chloroplast, mitochondria, and cytosol of plant cells via the

Calvin cycle, pentose phosphate pathway, glycolysis, and Krebs

cycle (Barkla et al., 2013b; Taiz et al., 2015). Therefore, salt stress

downregulates or upregulates several proteins associated with

these metabolic pathways, as observed in rice (Nam et al., 2012;

Liu et al., 2014), sorghum (Ngara et al., 2012), alfalfa (Xiong et al.,

2017), canola (Iqbal et al., 2019), chickpea (Arefian et al., 2019)

and Eutrema salsugineum (Goussi et al., 2021). Several studies

have reported that salt stress reduces proteins related to

chlorophyll biosynthesis, but increases thylakoidal proteins

related to the light reaction (Barkla et al., 2013b; and references

there in). Similarly, Li et al. (2017c) reported that the expression

of thylakoidal proteins (Psb27, PsaO, PetC, and LHCs) increased

in the leaves of salt-stressed Carex rigescens, contributing to salt

tolerance. Arefian et al. (2019) reported the upregulation of

chlorophyll a/b binding proteins and OEE proteins in chickpea

under salt stress. Liu et al. (2019) reported overexpression of the

D2 protein of photosystem II and chlorophyll a/b binding protein

in the Chinese herbal medicine Spica prunellae under salt stress. Ji

et al. (2019) found three chlorophyll a/b binding proteins of 13

photosynthesis-related proteins overexpressed in banana plants

(Musa paradisiaca) under salt stress. In contrast, Xiong et al.

(2017) reported the downregulation of thylakoidal proteins

carrying out light reactions, such as chlorophyll a/b proteins,

cytochrome b6-f complex, and OEE proteins, salt-stressed alfalfa.

While working Eutrema salsugineum Goussi et al. (2021) found

changes in abundance of 58 proteins related with thylakoidal

reactions. The major changes occurred in core protein of PSII

(D1, D2, CP43, CP47, PsbE and PsbH), whereas changes in sub-

units of oxygen evolving complex and cytochrome b6-f complex

remained constant. The downregulation of chlorophyll

biosynthesis proteins and upregulation of chlorophyll a/b

binding proteins, as part of the light harvesting complex of

photosystem II, help adjust antenna size of PSII and light

absorption to avoid ROS generation. Downregulation of

proteins such as cytochrome b6-f complex and photosystem I

regulate electron transport to reduce electron transfer to oxygen,

thus avoiding ROS generation. Moreover, overexpression of the

D2 protein of PSII, as part of the PSII repair cycle, helped plants

to maintain PSII functionality under salt stress.

CO2 fixation into sugars occurs via the RuBisCo enzyme in

the Calvin cycle. Salt stress reduces plant growth by affecting the

rate and amount of CO2 fixation by RuBisCo and other enzymes

in the Calvin cycle. For example, Wang et al. (2015a) reported that

salt stress upregulated the protein expression of RuBisCo small
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subunit 1, RuBisCo large subunit 1, and beta-carbonic anhydrase

in the halophyte Halogeton glomeratus, but downregulated the

expression of Calvin cycle related enzymes, such as phospho-

ribulokinase, putative transketolase, sedo-heptulose-1,7

bisphosphatase, and RuBisCo activase. In contrast, Kamal et al.

(2012) reported that salt stress inhibited the expression of

RuBisCo in wheat. Fan et al. (2011) reported that the

abundance of RuBisCo in halophytic Salicornia europaea was

similar under non-saline and moderately saline conditions but

decreased under high salt stress (200 mMNaCl). Moreover, at the

high salt level, the abundance of RuBisCo activase increased,

helping convert RuBisCo from inactive to active form, thus

increasing the CO2 fixation rate. The same authors found that

moderate salt stress increased the abundance of proteins related to

Calvin cycle enzymes (e.g., phosphoglycerate kinase,

glyceraldehyde-3-phosphate dehydrogenase subunit B, sedo-

heptulose, and 1-7 bisphosphatase, and transketolase), whereas

high salt stress decreased these proteins. Ji et al. (2019) reported 13

photosynthetic proteins, including RuBisCo and ribose-5-

phosphate isomerase, overexpressed in Musa paradisiaca

subjected to moderate salt stress (60 mM NaCl). In a

comparative proteome analysis, Pang et al. (2010) reported that

RuBisCo, RuBisCo activase, and other Calvin cycle enzymes were

downregulated in glycophyte Arabidopsis thaliana but

upregulated in halophyte Thellungiella halophyla under salt

stress, and suggested that these differences were mainly due to

the maintenance of RuBisCo activity by RuBisCo activase. While

working with castor bean plants (Ricinus communis) Wang et al.

(2021) found a total of 15 alkali-responsive proteins in the leaves

that are involved in CO2 fixation. It can be inferred that the extent

of salt stress effects on photosynthetic activity of glycophytic and

halophytic plants mainly depends on their ability to balance the

reducing power generation through the light reaction and its use

in CO2 fixation via the Calvin cycle. In addition, the ability of

plant species to manage excess reducing power production relates

to their degree of salt tolerance. The differential expression of

photosynthetic proteins under salt stress ranges from 17–38% of

the total, and depends on the species involved and intensity of salt

stress. In most studies, proteomic analysis is undertaken on 2–3-

week-old seedlings. Some plant species reach their maximal

photosynthetic rate at three to six weeks of vegetative growth;

hence, comparative proteome analyses at different developmental

stages are required to better understand the changes in

photosynthetic proteins under salt stress.

3.1.3 Salt stress proteins involved in
cellular respiration

Efficient energy production is pivotal for plant adaptation to

salt stress as various adaptive responses are energy-requiring

processes, e.g., biosynthesis of organic osmolytes for osmotic

adjustments, activation of antioxidant enzymes for ROS

scavenging, compartmentation of toxic ions into vacuoles, and

transport of metabolites, hormones, and proteins (Barkla et al.,
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2013a; Kosova et al., 2013; Li et al., 2015; Li et al., 2017b; Li et al.,

2017c; Luo et al., 2018; Ji et al., 2019; Zhan et al., 2019). In

addition, plant growth under salt stress requires more ATP than

no stress. Cellular respiration is responsible for the regulated

release of energy from carbohydrates in different cellular

compartments, and it occurs in the cytosol (glycolysis, pentose

phosphate pathway) and mitochondria (Krebs cycle and

oxidative phosphorylation) (Barkla et al., 2013a; Kosova et al.,

2013). While working with castor bean plants (Ricinus

communis) Wang et al. (2021) found a total of 25 alkali-

responsive proteins in the roots that are involved in energy

metabolism in cytosol and mitochondria. Likewise, Yildiz and

Terzi (2021) found increase in abundance of 19 proteins that are

related with glycolysis and TCA in a xero-halophyte Salsa crassa.

Over-expression of mitochondrial proteins and energy

metabolism have also been observed in glycophyte rice

(López-Cristoffanini et al., 2021). Salt stress upregulates several

glycolysis enzymes, including phospho-fructokinase, enolase,

and glyceraldehyde-3-phosphate dehydrogenase, to generate

energy for repairing salt-induced damage or adapting to salt

stress (Li et al., 2015; Liu et al., 2019). For example, salt stress

increased the protein abundance of alcohol dehydrogenase in

soybean genotypes (Ma et al., 2012). Alcohol dehydrogenase

reduces acetaldehyde to ethanol through NAD+ re-oxidation

and is essential for glycolysis (Ma et al., 2012; Taiz et al., 2015).

The energy status of a cell is also related to the activity of

enzymes in the Krebs cycle. For example, Jiang et al. (2007)

found that salt stress decreased the expression and activity of

malate dehydrogenase in Arabidopsis roots. Similarly, Liu et al.

(2019) reported the upregulation and increased activity of

glycolytic enzymes and Krebs cycle enzymes in salt-tolerant

Spica prunellae. In contrast, Li et al. (2015) reported that salt

stress downregulated proteins associated with the glycolytic

pathway and Krebs cycle in cotton seedlings. Salt stress also

affects several ATP-generating enzymes, such as ATP synthase,

which was downregulated in glycophytic banana plants exposed

to 60 mM NaCl (Ji et al., 2019), but upregulated in halophytic

Halogeton glomeratus (Wang et al., 2015a), Salicornia europaea

(Wang et al., 2009), and Aeluropis lagopoides (Sobhanian et al.,

2010). Moreover, Wang et al. (2015a) reported that salt stress

upregulated NAD(P)H-quinone oxido-reductase, triose-

phosphate isomerase, and lactoyl-glutathione lyase-like in H.

glomeratus, increasing ATP generation in cells and thus

improving salt tolerance. In another study, salt tolerance in

canola genotypes was related to an over-accumulation of

proteins related to glycolysis (phosphoglycerate kinase 3,

fructose-bisphosphate aldolase, and glyceraldehyde-3-

phosphate dehydrogenase) and energy metabolism (ATP

synthase subunit B) (Kholghi et al., 2019). Plants sensitive to

salt stress cannot maintain cellular respiration and produce

lower amount of energy than required for salt stress adaptation.

Plant metabolic and biosynthetic pathways are linked to

mitochondrial activity and oxidative phosphorylation.
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Moreover, organic acids and their intermediates are shuttled to

different cellular compartments, such as the photorespiratory

pathway (Taiz et al., 2015). Salt stress imposes deleterious effects

on mi tochondr i a l proce s se s , inc lud ing ox ida t i ve

phosphorylation, metabolite transport carrier proteins, and

antioxidant enzymes. Some reports have demonstrated that

mitochondrial respiration is involved in mediating salt stress

tolerance in different plants, e.g., wheat (Jacoby et al., 2010),

barley (Widodo et al., 2009), Rubinia pseudoacacia (Luo et al.,

2017), and Arabidopsis thaliana (Smith et al., 2009).

Mitochondrial activity thus plays a pivotal role in plant

adaptive responses to salt stress (Jacoby et al., 2011; Che-

Othman et al., 2017). For example, in wheat, Jacoby et al.

(2010) found that salt stress caused a marked over-

accumulation of proteins responsible for ROS scavenging,

including Mn-SOD, cysteine synthase, nucleotide di-phosphate

kinase, and voltage-dependent anion channels. Moreover, these

proteins are differentially overexpressed in the salt-tolerant

wheat cultivar Wyalkatchem and salt-sensitive wheat cultivar

Janz. Similarly, Chen et al. (2009) found that salt stress

upregulated glycoside hydrolase, mitochondrial HSP 70, and

Cu/Zn-superoxide dismutase and downregulated ATP synthase

beta-subunit and cytochrome c oxidase subunit 6b.

Various studies have demonstrated that mitochondrial

proteins are salt stress responsive proteins linked to Krebs cycle

related proteins, metabolism-related proteins, membrane transport

proteins, antioxidant defense related proteins, and HSPs. Thus, salt

stress differentially regulates mitochondrial proteins, convincing

evidence that an increase in mitochondrial antioxidant defense

proteins plays a significant role in plant salt tolerance.
3.2 Stress proteins involved in water and
ion transport

Biological membranes are barriers to water and ion

transport in plant cells. Sustained plant growth requires tight

control of ions, particularly Na+ uptake, its redistribution among

different organs, and accumulation into cell vacuoles, especially

under saline stress (Munns and Tester, 2008). While it is well-

known that Na+ exclusion from shoots or leaves and

maintenance of K+ homeostasis are characteristics of salt

tolerance in several crop species (Naeem et al., 2020; Chen

et al., 2021), Cl– exclusion may be another important

component for protecting photosynthetic tissues (Li et al.,

2017a). Some proteins play an integral role in Cl–, Na+, and

K+ transport from roots to shoots and within cells (cytosol to

vacuoles) (Roy et al., 2014; Li et al., 2017a; Munns et al., 2020a).

Regulation of Na+ transport is mediated by sodium loading and

unloading in the xylem of parenchyma cells, sodium exclusion

from roots to soil, and sodium compartmentation in vacuoles

(Roy et al., 2014; Ismail and Horie, 2017; Li et al., 2017a; Huang

et al., 2020; Munns et al., 2020a).
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3.2.1 Salt stress proteins involved in Na+

transport and exclusion
Sodium exclusion from roots is undertaken mainly by the

plasma membrane Na+/H+ antiporter -a well-known gene SOS1.

Silencing or mutation of this gene increased salt sensitivity in

different crop species, indicating its putative role in Na+

exclusion and hence salt tolerance, e.g., rice (Martinez-Atienza

et al., 2007), tomato (Olıás et al., 2009), wheat (Cuin et al., 2011),

Chrysanthemum (Gao et al., 2016), and Arabidopsis (Feki et al.,

2014a). Structural and functional analyses of Na+/H+ antiporters

or SOS1 gene suggest that it is a membrane protein of 127 kDa

with 12 trans-membrane domains, cytosolic N-terminal end,

and long cytosolic C-terminal hydrophilic domain (Shi et al.,

2000). The C-terminal long tail contains the phosphorylation

site, autoinhibitory domain, and cyclic nucleotide-binding

domains (Figure 2) (Feki et al., 2011). Na+/H+ antiporter

activation requires inhibition of the autoinhibitory domain

and phosphorylation at the C-terminal (Feki et al., 2011). The

AtNHX8 protein, similar to SOS1, lacks the C-terminal end and

did not increase salt tolerance in transgenic Arabidopsis thaliana

plants (An et al., 2007). However, deletion of the autoinhibitory

domain from the Na+/H+ antiporter (SOS1) produced a

constitutively active form of the antiporter, increased water

and K+ uptake, reduced Na+ uptake, and thus increased salt

tolerance in Arabidopsis thaliana (Feki et al., 2014b) and tobacco

(Zhou et al., 2016). Phosphorylation of Na+/H+ antiporters
FIGURE 2

Salt stress is sensed by calcium channel that increased the
cytosolic calcium. Increase in cytosolic calcium activates CBL
(SOS3) which interacts with serine-threonine protein kinase CIPK
(SOS2) that phosphorylates at serine residues of cytosolic C-
terminal domain of SOS1 (Na+/H+ antiporter). Upon activation,
SOS1 exclude the Na+ using pH gradient as a source of energy.
Structure of Na+/H+ antiporter with 12 transmembrane domains
(TMD; 1-440), cytosolic functional domain (CNBD; 741-925) and
C-terminal auto-inhibitory domain (998-1146). The red mark at
the end of C-terminus represents DSPS, a conservative
phosphorylation site recognized by the calcineurin B-like protein
(CBL)-CIPK protein kinase complexes. A serine threonine protein
kinase (CIPK; SOS2) phosphorylates on three serine sites at the
C-terminal end and highlighted as “S” in red with circle (Adapted
from Ismail and Horie, 2017; Shohan et al., 2019; Mansour and
Hassan, 2022).
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(SOS1) is regulated by two other protein kinase complexes,

CIPK24 (SOS2) and CBL4 (SOS3) (Quintero et al., 2011).

SOS2 (CIPK) is a kinase of serine-threonine kinase type

belonging to the SnRK3 family (Barajas-Lopez et al., 2018),

while CBL is a member of the calcium-binding proteins that

sense hyper-cytosolic Ca2+ (Roy et al., 2013; Roy et al., 2014).

Mutations in both genes cause hypersensitivity to salt stress,

indicating their potential role in Na+ exclusion and salt tolerance

(Ismail and Horie, 2017). However, Na+ exclusion is an energy-

consuming process coupled with H+-ATPase activity. For

example, salt-tolerant wheat cultivars (Kharchia-65 and S-24)

had greater H+-ATPase expression and activity in epidermal

roots cells than the salt-sensitive cultivar (Potohar), which was

associated with Na+ exclusion (Ayala et al., 1997; Cuin

et al., 2011).

Compartmentation of Na+ in the vacuole by Na+/H+

antiporters localized on the vacuolar membrane helps

maintain low Na+ in the cytosol (Apse et al., 1999; Apse et al.,

2003; Apse and Blumwald, 2007; El Mahi et al., 2019).

Overexpression of vacuolar Na+/H+ antiporters increased salt

tolerance in wheat (Cuin et al., 2011), Vigna unguiculata (L.)

Walp. (Mishra et al., 2014), apple (Li et al., 2013), and several

other crops (Roy et al., 2014). Several studies have shown that

vacuolar Na+/H+ exhibited K+/H+ exchange activity in addition

to Na+/H+ activity (Leidi et al., 2010; Bassil et al., 2011; Bassil

et al., 2012; Ismail and Horie, 2017), supported by vacuolar H+-

ATPases and pyrophosphatases and important for salt tolerance

(Shen et al., 2015; Gaxiola et al., 2016). Plasma membrane H+-

ATPase pumps in the tonoplast pump H+ into the vacuoles,

providing adequate protons for Na+/H+ antiporters, as

evidenced by overexpressing V-PPases related to the

pyrophosphate-driven proton pump (NbVHP) in Nicotiana

benthamiana leaves showing improved salinity tolerance

(Graus et al., 2018).

3.2.2 Salt stress proteins involved in K+

transport and maintenance of the K+/Na+ ratio
The high-affinity potassium transporter (HKTs) gene family

and proteins of the salt overly sensitive pathway have a potential

role in regulating Na+ transport and K+ homeostasis (Roy et al.,

2014). Of the two sub-families of HKTs, HKT1 members have

great potential to improve salt tolerance (Ren et al., 2005; Rus

et al., 2006; Ahmadi et al., 2011; Wang et al., 2015c; Ali et al.,

2016; Jaime-Pérez et al., 2017; Zhang et al., 2017; Xu et al., 2018;

Wang et al., 2019a). Members of the HKT1 family are Na+

transporters (channel-like Na+ uniport) are present on the

plasma membrane of root xylem parenchyma cells. They

retrieve Na+ ions from the xylem stream to reduce sodium

transport to shoots (Roy et al., 2014; Tounsi et al., 2016; Shohan

et al., 2019). The sodium selectivity over potassium in HTK1s is

due to the presence of a serine residue at the first pore-loop

domain (Davenport et al., 2007; Ali et al., 2016; Ismail and

Horie, 2017). In contrast, members of the HKT2 sub-family
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have a glycine residue at the first pore-loop domain, permeable

to K+ and Na+ (Na+/K+ symport) (Figure 3). The HKT2

transporters help cereal crops take up K+ under salt stress

(Horie et al., 2007; Horie et al., 2009; Ismail and Horie, 2017).

Some reports suggest that dicot plant species have fewer HKT

genes, belonging mainly to the HKT sub-class-I family. In

contrast, monocot plant species have several HKT genes from

both sub-gene families. For example, TmHKT1;4, TmHKT1;5,

and OsHKT1;4, OsHKT1;5 in wheat belong to sub-class I family

and mediate Na+ retrieval from xylem loading to restrict Na+

transport from roots to shoots or from leaf sheaths to leaf blades

(Cotsaftis et al., 2012; Byrt et al., 2014; Ali et al., 2016; Suzuki

et al., 2016).

It seems likely that the major net influx of Na+ is not

controlled by a single transport protein but by several

transport proteins. However, Na+/H+ antiporters and HKT1

transport proteins might determine net Na+ uptake and

transport from roots to shoots of salt-stressed plants.

3.2.3 Salt stress proteins involved in water
balance

Water balance in crops under salt stress is an adaptive

response, with the proteins associated with uptake and

maintenance of water homeostasis substantially altered (Li

et al., 2017d; McGaughey et al., 2018). Water uptake is

regulated mainly by non-selective cation channels (NSCCs),

i.e., water transport proteins or aquaporins (Byrt et al., 2017;

Kourghi et al., 2017; McGaughey et al., 2018). Aquaporins

include seven sub-families; the four main sub-families are

plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic

proteins (TIPs), NOD26-like intrinsic proteins (NIPs), and small

basic intrinsic proteins (Maurel et al., 2015; Maurel et al., 2016).

Aquaporins play a significant role in passive bidirectional

selective transport of small molecules, including water, CO2,

salicylic acid, boron, urea, silicon, H2O2, and sodium ions (Byrt

et al., 2017; Kourghi et al., 2017; McGaughey et al., 2018). Recent

studies and some comprehensive reviews suggest that

aquaporins are involved in maintaining water homeostasis in

plants and play crucial roles in abiotic stress tolerance, stress

signaling, nutrient uptake, transpiration, photosynthesis, and

plant development (Maurel et al., 2016; Chaumont and

Tyerman, 2017; McGaughey et al., 2018). For example, Qin

et al. (2019) found that several aquaporins (PIPs) in halophyte

Eutrema salsugineum had greater expression in roots than

shoots under salt stress, consistent with root and leaf hydraulic

conductivity. Moreover, they found that this differential

expression in plant organs improved root water transport but

decreased leaf transpiration under salt stress. Similarly,

overexpression of plasma membrane or tonoplast intrinsic

membrane aquaporins in rice (Katsuhara et al., 2003), tobacco

(Aharon et al., 2003), and Arabidopsis thaliana (Wang et al.,

2011) increased dehydration and salt stress sensitivity. More

recently, Li et al. (2017d) reported that Na+ pretreatment to
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white clover plants enhanced aquaporin-mediated water

transport from roots to leaves, improving stress tolerance.

Overexpression of aquaporin genes from Medicago sativa

increased salt tolerance in Arabidopsis thaliana by maintaining

a higher K+/Na+ ratio and upregulating genes related to ABA

and cytokinin and proline metabolism (Li et al., 2019).

Regulation of aquaporin expression under salt stress depends

on the intensity and duration of salt stress, plant organ,

developmental stage, and species involved. For example,

Arabidopsis plants subjected to 140 mM NaCl exhibited

increased expression of most aquaporin genes (Geng et al.,

2013). In contrast, Lee and Zwiazek (2015) reported that

three-week-old Arabidopsis seedlings exposed to 10 mM NaCl

for 1 h had decreased expression of all aquaporin genes except

AtPIP2;6, whose expression did not change. Likewise, Kayum

et al. (2017) found that 24 h of 200 mM NaCl increased the

expression of BrPIP genes in Brassica rapa, but decreased the
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expression of BrPIP1;3a/b, BrPIP2;7b/c, and BrPIP2;4a/b beyond

24 h. In another study, 100 mMNaCl increased the expression of

aquaporins (PIPs and TIPs) after 2–48 h in maize roots, whereas

200 mM NaCl decreased their expression after 24 h. Regulation

of aquaporins under salt stress also occurs at the post-

translational level by phosphorylation, glycosylation,

methylation, ubiquitination, and deamination, affecting the

opening and closing of aquaporins (Byrt et al., 2017; Kourghi

et al., 2017; McGaughey et al., 2018). Moreover, several studies

have demonstrated that signalling molecules and secondary

messengers, such as pH, Ca2+ and H2O2 signals, regulate the

opening and closing of aquaporins in response to salt stress

(Bellati et al., 2010; Wudick et al., 2015; Bellati et al., 2016;

Rodrigues et al., 2017). In sum, aquaporins regulate root

hydraulic conductivity and water transport in plants under salt

stress through two to three layers of translational and post-

translational regulatory factors.
B

C

A

FIGURE 3

Model of high affinity potassium channel HKT1 with eight transmembrane domain and four pore domains. (A) The selective pore or selectivity
filter in class 1 has Ser-Gly-Gly-Gly, whereas members of class 2 have selective pore with Gly-Gly-Gly-Gly. Four amino acids are placed on top
of the four short loops or PD loop and make it as selectivity filter. The selective filters transport the Na+ ion selectively from xylem vessel to
xylem parenchyma cells as xylem-Na-unloading process. (B). Class 1 HKT channel act as Na+ uniporter only, whereas Class 2 HKT channel as
Na+ and K+ channel (Adapted from Ismail and Horie, 2017; Naeem et al., 2020; Mansour and Hassan, 2022).
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3.3 Proteins involved in osmoregulation
(e.g., osmotin and many small-sized
soluble proteins) for maintaining cell
water content under saline stress

Several plant species accumulate compatible solutes and

osmolytes, such as glycinebetaine, proline and trehalose, under

salt stress with significant roles in osmotic adjustment, osmo-

protection of cellular membranes and enzymes, and ROS

detoxification (Ashraf and Foolad, 2007). In addition, several

stress-related proteins are biosynthesized that play a vital role in

plant adaptation to salt stress, acting as nitrogen storage and re-

used during recovery from salt stress. Several years back, a salt-

induced 26 kDa protein in tobacco was characterized and named

as osmotin (Singh et al., 1987). Osmotin facilitates osmotolerance

in plants (Barthakur et al., 2001) and modulates metabolism for

osmotic adjustment (Raghothama et al., 1993). Thomas and

Bohnert (1993) found greater accumulation of osmotin-like

proteins (OLPs) in a halophyte Mesembryanthemum

crystallinum under salt stress. OLPs (24–26 kDa) also help

plants maintain cellular osmolarity by compartmentalizing

solutes or through structural and metabolic alterations (Choi

et al., 2013; Weber et al., 2014; Chowdhury et al., 2017). While

osmotin and OLP-mediated salt tolerance occur in different crop

species by improving plant water status and photosynthetic

activity and reducing oxidative damage (Barthakur et al., 2001;

Kumar et al., 2016; Hakim et al., 2018), the detailed molecular

mechanism involved remains unexplored. In another study with

halophyte Chenopodium quinoa Rasouli et al. (2021) found

increase in 50, 13 and 8-fold increase in expression of 29B,

osmotin like protein (OSML13) and dehydrin early responsive

protein (ERD14), respectively. While assessing salt stress specific

proteins in rice, López-Cristoffanini et al. (2021) found over

expression of dehydrins in leaves that may play a key role in

salt tolerance in rice.

Hurkman et al. (1991) found another group of proteins,

germin-like 26 kDa proteins, in salt-stressed barley roots. The

germins protein family has diverse roles in plants, including seed

germination and ROS scavenging due to the presence of certain

biochemical characteristics such as homo-polymer formation,

cell wall localization, different enzyme activities, and

glycosylation (Nakata et al., 2002; Davidson et al., 2009;

Banerjee et al., 2017). Germins have the germin motif, which

helps develop a jellyroll b-barrel structure (Caliskan, 2011).

Germin-like proteins were upregulated in salt-stressed barley

roots but downregulated in the coleoptile (Hurkman and

Tanaka, 1996). Similarly, salt stress increased the biosynthesis

of germins (GLP9, At4g14630; oxalate oxidase-like proteins) in

Arabidopsis thaliana (Jiang et al., 2007). Several other proteomic

studies on different plant species under salt stress suggest that

the upregulation of germins or germin-like proteins involves cell

wall cross-linking to maintain cellular anatomy and ROS-

scavenging activity in the apoplastic region, e.g., barley
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(Ozturk et al., 2002; Fatehi et al., 2012), wheat (Kamal et al.,

2012), rice (Banerjee et al., 2017; Frukh et al., 2020), spinach (Bai

et al., 2014), and grapes (Cramer et al., 2007). In contrast, germin

biosynthesis decreased in the roots of halophyt ic

Mesembryanthemum crystallinum (Michalowski and Bohnert,

1992). Thus, osmotin, OLPs, germins, and germin-like proteins

likely protect plants from salt-induced dehydration stress

through osmotic adjustment in the leaves or modifying root

cell walls to protect them from dehydration. However, changes

in the expression of these proteins in plants under salt stress

depend on the plant species and developmental stage.
3.4 Stress proteins involved in the
maintenance of ultrastructure

Salinity stress causes osmotic stress by reducing water

availability and thus inhibiting plant growth. During this

process, salt stress poses substantial mechanical stress on plant

cells by increasing the threshold of pressure for cell walls in

expanding cells in root and stem meristematic tissues (Neumann,

2011). Such mechanical stress changes various cytoskeletal

proteins, such as tubulin, actin, and kinesins, which help plants

adapt to salt stress (Cheng et al., 2009; Barkla et al., 2013a; Kosova

et al., 2013). For example, in rice roots, salt stress increased the

cytoskeletal-cell wall linker proteins, which bind callose synthase

in the plasma membrane and remodel cell wall properties of root

cells (Cheng et al., 2009). Cell wall properties can be remodelled

by various proteins with enzyme activities, such as glycosyl

hydrolase family proteins, glycine-rich proteins, germins and

germin-like proteins, and extensins (Bray, 2004; Jiang et al.,

2007; Taiz et al., 2015). The abundance of proteins b-
glucosidases and b-1,3-glucanase from the glucosyl hydrolase

family increased in salt-stressed Arabidopsis thaliana roots (Jiang

et al., 2007). In creeping bentgrass, increased b-D-glucan
exohydrolase was associated with enhanced cell wall plasticity

under saline conditions (Xu et al., 2010). Similarly, glycine-rich

proteins with more than 60% glycine residues are important

structural components of cell walls, with vital roles in plant

resistance mechanisms against abiotic stresses, including salt

stress (Mousavi and Hotta, 2005; Jiang et al., 2007). For

example, salinity stress increased cell wall associated glycine-

rich proteins associated with mechanical and defense properties

of rice (Dooki et al., 2006) and cucumber (Du et al., 2010).

Similarly, salt stress increased the expression of cellulose synthase

in wild halophytic rice Porteresia coarctata (Sengupta and

Majumder, 2009). In contrast, the cell wall elongation enzyme,

xyloglucan endotransglycosylase, decreased in grapevine cultivar

Chardonnay under salt stress and was associated with reduced

growth (Vincent et al., 2007). These reports suggest that plant

adaptations to salt stress require cytoskeletal proteins and plasma

membrane associated proteins to improve cell wall mechanical

properties under stressful environments.
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3.5 Proteins involved in the protection of
biomolecules such as LEAs and HSPs

Salt stress causes osmotic stress, i.e., water depletion in living

cells resulting in cellular dehydration (Munns, 2002) and thus

damaging macromolecular and cellular structures (Hoekstra

et al., 2001). Osmotic stress tolerance in organisms requires

several enzymes and biomolecules to prevent oxidative damage

and maintain the native structure of enzymes, macromolecules,

and membranes (Hasegawa et al., 2000; Maggio et al., 2002;

Maggio et al., 2006; Shoji et al., 2006). Under normal conditions,

macromolecules and membranes are hydrated, but under salt-

induced osmotic stress, plants accumulate non-reducing

oligosaccharides, compatible solutes, osmoprotectants, and

osmoprotective proteins as a water replacement to protect

macromolecular structures (Mansour, 1998; Hasegawa et al.,

2000; Hoekstra et al., 2001; Ashraf and Foolad, 2007; Mansour

and Ali, 2017). Osmo-protective proteins are hydrophilic

proteins that include late embryogenesis abundant (LEA)

proteins and HSPs (Rontein et al., 2002; Bhardwaj et al., 2013;

Jacob et al., 2017). The extent of accumulation of these

hydrophilic proteins is consistent with the degree of plant salt

tolerance (Barkla et al., 2013a; Kosova et al., 2013; Liang et al.,

2013). LEA proteins are categorized into seven subgroups based

on sequence similarity and amino acid composition. The group 2

LEA proteins are referred to as dehydrins. LEA proteins protect

proteins and membranes by replacing water, scavenging ROS,

and binding with ions (Battaglia et al., 2008). Overexpression of

LEA proteins enhances salt tolerance in various plant species,

including Arabidopsis (Brini et al., 2007; Zhang et al., 2012b; Jia

et al., 2014), rice (Hu et al., 2016), tomato (Muñoz-Mayor et al.,

2012) and Salsa crassa (Yildiz and Terzi, 2021).

Although the detailed mechanism of action of LEA proteins

is not known, we present a brief summary of current research

here. The LEA proteins are unstructured in a hydrated state and

known as intrinsically unstructured or disordered proteins

(Tompa, 2005; Tompa and Kovacs, 2010; Pauwels et al., 2017).

The intrinsically unstructured or disordered nature of LEA

proteins is reportedly due to their high proportion of glycine

and glutamine residues. In addition, LEA proteins possess

unique characteristics, including excellent hydration potential,

amplified speed of interaction with other proteins to support

folding, and prevention of protein aggregation, i.e., they act as

chaperones (Tompa and Kovacs, 2010; Liu et al., 2017),

antioxidants (Hara et al., 2004), and cryoprotectants (Hughes

and Graether, 2011). In the past decade, several reports and

comprehensive reviews from Professor Peter Tompa’s group

indicate that LEA proteins have several cellular regulatory

functions in the cell cycle and transcription, translation, and

post-translational modifications of LEA proteins, such as

phosphorylation, methylation, and ubiquitination (Tompa,

2005; Tompa and Kovacs, 2010; Tompa and Han, 2012;

Bhardwaj et al., 2013; Kovacs et al., 2013; Tompa et al., 2015;
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Tompa, 2016; Liu et al., 2017; Pauwels et al., 2017). Post-

translational modifications change the folding characteristics

of other proteins and their cellular localization (Liu et al.,

2017). For example, phosphorylation of group-2 LEA proteins

(dehydrin protein) was related to stress tolerance in

Craterostigma plantagineum (Röhrig et al., 2006) and

Thellungiella salsuginea (Rahman et al., 2011). Similarly,

phosphorylation to 11-amino acid motif in group-3 LEA

proteins enhanced salt and drought tolerance in Escherichia

coli (Liu et al., 2010). More recently, phosphorylation at three

sites of PM18 (group 3 LEA proteins) enhanced the protective

effect in soybean cells under salt stress and a simulated

dehydration state (Liu et al., 2017).

HSPs or chaperones are another group of powerful buffer

proteins produced in plants that protect proteins from stress-

induced misfolding (Carey et al., 2006; Swindell et al., 2007). In

the past decade, this group of proteins has been studied

extensively; it is now clear that the function of these proteins

is not limited to protein folding, with a pivotal role in protein

targeting and degradation to regulate signaling cascades under

abiotic stresses, including salt stress (Al-Whaibi, 2011; Kadota

and Shirasu, 2012; Kriechbaumer et al., 2012; Fu, 2014; Huang

et al., 2014; Niforou et al., 2014; Jacob et al., 2017).

In summary, proteins initially discovered as membrane and

macromolecule stabilizers have several physiological roles in

stress tolerance and could be good targets for developing salt

stress resistance in crop pants. However, more research is

required to uncover their putative roles in stress tolerance.
3.6 Proteins involved in
signal transduction

All land plants face continuously changing environments;

thus, they require strategies to rapidly sense environmental

changes such as increased salinity in the rhizosphere (Taiz et al.,

2015). Plants should be able to detect multiple components of salt

stress, such as toxic ions (Na+ and Cl–) in soil solution or plants,

changes in osmotic potential in soil and plants, nutrient

imbalance, and ROS generation (Shabala et al., 2015; Shabala

et al., 2016). Sensing environmental changes and signaling to

respond to these changes involves sensor proteins and response

regulator proteins; signaling molecules such as secondary

messengers play a role in signal amplifications and translation

into a broad array of physiological alterations to optimize plant

performance under salt stress (Taiz et al., 2015). Putative salt stress

sensor proteins include plasma membrane localized ion

transporter proteins, Na+ and K+ channels, mechanosensory

proteins, H+-ATPases, and cytosolic Ca2+-binding proteins (e.g.,

calmodulin, calmodulin-like, calcineurin B like, and Ca2

+-dependent protein kinases), and are comprehensively

discussed elsewhere (Shabala et al., 2015). Overexpression or

knock-down mutants of these proteins influence salt tolerance
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in plants (Wu et al., 1996; Liu and Zhu, 1998; Zhu et al., 1998;

Zhu, 2000; Zhu, 2001a; Zhu, 2001b; Shi and Zhu, 2002; Shi et al.,

2003; Gong et al., 2004; Chinnusamy et al., 2006; Maggio et al.,

2006; Bai et al., 2013; Roy et al., 2013; Roy et al., 2014). The well-

known signaling pathway for salt stress, i.e., SOS (salt overly

sensitive pathway) and its components SOS3 (CBL, Ca2+-binding

protein), SOS2 (CIPK24, calcineurin B like interacting protein

kinase), SOS1 (Na+/H+ antiporters) are discussed at length in the

salt exclusion section. However, other components include

calcium sensor proteins, such as calmodulin and calmodulin-

like proteins, detect changes in cytosolic Ca2+ under salt stress

(Parre et al., 2007; Dodd et al., 2010; Laohavisit et al., 2013;

Manishankar et al., 2018). These Ca2+-binding proteins or Ca2

+-dependent protein kinases bind to calcium only under elevated

calcium concentrations (Halfter et al., 2000; Kiegle et al., 2000;

Dodd et al., 2010), executing downstream physiological responses

or developmental changes (Charpentier and Oldroyd, 2013;

Laohavisit et al., 2013; Choi et al., 2014; Manishankar et al.,

2018) that are important in plant salinity tolerance, as all sensing

mechanisms (channels, ATPases, mechano-sensors, etc.) operate

in parallel and are integrated at the central calcium signaling hub

(Charpentier and Oldroyd, 2013; Shabala et al., 2015;

Manishankar et al., 2018). Recently, Chen et al. (2022) found

major changes in expression of proteins related with ABA and GA

metabolism and signaling pathways in maize under salt stress at

the germination stage. Such kind of studies indicated that plant

adjust hormonal homeostasis and signaling at the germination

stage to adjust with salt stress. Such studies will definitely help in

identification of master regulator in response to salt stress at the

specific developmental stage. In sum, prominent salinity stress

sensing mechanisms enable plants to decode information on the

intensity, severity, and nature of salinity stress into stress-specific

H2O2 and Ca2+ signatures to distinguish between osmotic and

specific ion-toxic stresses. However, the sodium-specific sensor

protein is not known, nor is information on tissue-specific sensing

and signaling at different time scales (instantaneous hydraulic,

slow hormonal).
3.6 Salt stress proteins involved in post-
transcriptional and post-translational
modifications

Expression of several genes related to defense, energy

metabolism or photosynthesis are regulated by upstream

transcriptional regulatory factors. In addition, appropriate

folding and functioning of proteins require some more

regulatory proteins at post-transcriptional, translational and

post-translational level. For example, protein splicing factors or

maturases help in plant group-II introns in self-splicing

(Shevtsov-Tal et al., 2021). Salinity stress (200 mM NaCl)

reduced the expression of maturase in alfalfa (Xiong et al.,

2017). Down-regulation of maturase by salt stress indicated
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poor translation of proteins in shoots and roots of alfalfa.

Expression of another protein with DNA chaperone activity

and bind with single stranded DNA, nucleic acid binding

protein (NABP), reduced in shoots and roots of alfalfa (Xiong

et al., 2017). Nucleic acid binding protein is small and highly

conserved protein across plant species. Like NABP, RNA-binding

proteins (RBPs) also played vital role in cellular functions of

protein transport and protein localization. RBPs play key roles in

RNA splicing, mRNA stabilization, mRNA transport to targeted

site and translation. Abundance of three RBPs has been observed

in shoots and roots of salt stressed plants of alfalfa. These reports

suggested that increase in abundance of nucleic acid binding

proteins for RNA-post-transcriptional regulation is proposed to

be important for improved salt tolerance in plants.

Ribosomes (ribonucleoprotein complex), translation

initiation factors, elongation factors, and tRNA synthases are

meant for protein translation, and help in post-translational

modifications. Salt stress decreased the ribosomal proteins,

while ribosomal components increased in Arabidopsis thaliana

(Huang et al., 2018) and Gossypium hirsutum (Li et al., 2015)

under salt stress. Likewise, 100 mM NaCl salinity caused

upregulation of eukaryotic translation initiation factor (eIF 5A-

2), while 200 mM NaCl salt stress down-regulated this

ribonucleoprotein in alfalfa (Xiong et al., 2017). Similar down-

regulation of expression of eIF 5A-2 due to salt stress has been

observed in rice leaf lamina (Parker et al., 2006), and SnRK2

transgenic rice (Nam et al., 2012). Proteins of other translation

initiation factor (e.g., eIF3I) were down-regulated in the roots of

salt stressed plants of Arabidopsis thaliana (Jiang et al., 2007) and

Gossypium hirsutum (Li et al., 2015). Similarly, salt stress up-

regulated eIF5A1 in salt tolerant cultivar of barley suggesting its

role in general translation under salt stress and its contribution in

salt tolerance (Mostek et al., 2015). While working with

halophytes (Suaeda maritima, Salicornia brachiata) Benjamin

et al. (2020) found up-regulation of eIF4A in S. brachiata under

200 mM NaCl salinity stress conditions, which indicated its

involvement in salt tolerance of halophyte. Substantial increase

in abundance of eIFs, EFs and ribosomal proteins in salt tolerant

cultivar as compared to that in salt sensitive cultivar of rice (Frukh

et al., 2020) and maize (Cheng et al., 2014). Protein translation

effector (EF1B) regulates translation fidelity was up-regulated

under salt stress in salt tolerant tomato accession than that in

salt sensitive accession (Nveawiah-Yoho et al., 2013). Protein

elongation factor (GmEF4) was up-regulated in salt tolerant

soybean which is positively associated with it salt tolerance

(Zhao et al., 2019). While working cotton Li et al. (2015) found

increase in abundance of two ribosomal proteins and elongation

factor under salt stress conditions. Based on these results, it is

suggested that salt tolerant cultivars had better capability to

maintain protein translation efficiency by regulating different

components of translation machinery under salt stress conditions.

After protein synthesis, post-translational modifications such

as phosphorylation, dephosphorylation, acetylation, methylation,
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glycosylation and ubiquitination are involved in correct folding,

cellular localization, protein half-life, interaction with other

proteins, cell signaling and fine-tuning of protein functioning

(Krishnamurthy et al., 2018). It has been observed that salt stress

increased the protein glycosylation and phosphorylation in

canola Shokri-Gharelo and Noparvar, 2018). While

comparative phosphor-proteomic analysis of salt tolerant and

salt sensitive inbred lines of maize Zhao et al. (2019) reported that

phosphoproteins associated with degree of salt tolerance in maize

were up-regulated in salt tolerant inbredmaize line. Kinases cause

the phosphorylation of proteins to activate them and

phosphatases dephosphorylate the proteins to de-activate the

proteins. Çakır Aydemir et al. (2020) reported that salt stress

changed the expression of 33 protein kinases and 16 phosphatases

of grapevine rootstock. Post-translational events also include the

appropriate folding of the proteins. Large number of proteins are

meant for protein folding for their proper functioning and to

avoid aggregation of nascent proteins. In addition, proteins with

in appropriate folding or damaged during folding were detected

and removed via 26S proteosome. Protein disulfide-isomerase A6

(PDI A6), a chaperone protein, helps inappropriate folded

proteins in a correctly folded proteins without affecting

disulfide shuffling (Gruber et al., 2006). Salt stress increased the

abundance of PDI A6 proteins in rice (Nohzadeh et al., 2017) and

cotton (Li et al., 2015). In contrast, 200 mM NaCl salinity stress

down-regulated PDI A6 proteins in alfalfa (Xiong et al., 2017). As

described earlier, post-translational modifications of proteins

include ubiquitination to degrade the targeted negative-

regulator proteins via 26S proteosome. Zhao et al. (2013)

reported that salt stress increased the ubiquitination with

subsequent degradation of targeted proteins and this plays a

key role in maintaining level of proteins of keymetabolic enzymes

under salt stress. Similarly, salt stress increased the expression of

protein post-translational modification regulator, transglutamase

(TGase), in tobacco plants which improved the stability of

chloroplastic proteins, photosynthetic capacity of tobacco plants

and salt tolerance (Zhong et al., 2019). These reports suggested

that regulation of salt stress proteins in different parts of different

plant species is complicated in terms of translation and post-

translational modifications but play a key role in salt tolerance.
3.7 Proteins involved in salt stress
memory networks

Plants save the stress events as molecular memory. The

general mechanism of saving stress memory event occurs as

over-accumulation of osmo-regulatory metabolites and

phytohormones, synthesis of protective proteins, histone

protein modification via DNA methylation and chromatin

remodeling. Upon relieving from stress event, this stored

memory initiates a quick and strong response for phenotypic

variation of suitable traits that are responsible for long-term
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adaptation (Parejo-Farnés et al., 2019; Villagómez-Aranda et al.,

2022). Stress memory can remain save over days, weeks or

months in somatic cells (Mitotically stable) and it may remain

stable and inheritable too (meiotically stable). Changes in gene

expression by genome modification occurs through epigenetic

marks and these include DNA methylation, histone protein post-

transcriptional modification, and small RNAs (micro-RNAs,

miRNA; small interfering RNA, siRNAs). Recently, while

working with Salvia miltiorrhiza Yang et al., (2018) reported

that proteins responsible for DNA-methylation (DNA methyl-

transferases DNTM1, DNTM3A, DNTM3B) were over-

expressed affected phenolic acid biosynthesis and stress

tolerance. However, treatment with inhibitor of DNA

methylation affected the gene expression of phenylpropanoid

biosynthesis pathway and phenolic acid production (Figure 4).

Similarly, in transgenic tomato for ERF1 (Ethylene response

factor), DNA methylation at several genes initiate ethylene

synthesis and signaling for stress tolerance (Zuo et al., 2018).

Likewise, in another study with grapevine, salt stress reduced

three-fold expression of 13 genes histone proteins (H2AX, H2A,

H4, H3.2) (Çakır Aydemir et al., 2020). In contrast, salt stress

activated global histone acetylation levels in maize genome by

over-expression of histone acetyl-transferases (HATs), and these

changes in histone protein modifications and DNA methylations

were positively correlated with salt tolerance in maize (Li et al.,

2014). Application of 500 mMNaCl cause the over-accumulation

of histone H2A in halophyte Salicornia brachiata and its greater

accumulation was positively associated with appropriate

assembly of centromeres of chromosome, changes in gene

expression and repair of DNA breaks. These reports suggested

that establishing and resetting stress memory during plant life

cycle is driven by post-transcriptional gene silencing via DNA-

methylation or histone protein modifications that can be non-
FIGURE 4

Salt stress modify the histone proteins by acetylation and
methylation which activates the expression of genes such as
HKT (high-affinity K+ channel) as long-term salt stress memory
for rapid response to salt stress. In addition, histone acetylation
and deacetylation played role in fine tuning of salt-stress
memory (Adapted from Çakır Aydemir et al., 2020; Roy and Soni,
2022).
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inheritable or inheritable. Since very few reports are available on

this aspect, further research is need on this topic.
4 Mechanics and supra molecular
kinetics of salt-stress proteins

Proteins perform a variety of functions in different parts of

cell that include sensing and signaling, metabolism, transport of

mineral nutrient and biomolecules, and transfer of genetic

information (Nelson and Cox, 2021). Majority of proteins

functions as homo-oligomer or hetero-oligomer assemblies.

Proteins form tertiary structure by forming folding of globular

domains consisting a helices, b-sheets and random coils.

Proteins have two or more than two domains that are

connected with coils or joints (Onck, 2017). These domains

have ligand binding domains or other domains for various

functions. Sometime ligand binding domain is present within

several domains and other domains facilitate the ligand in

interaction with ligand binding domain (Nelson and Cox,

2021). It is widely accepted that appropriate 3-D structure of

the protein is responsible for proper functioning. However, any

biotic or abiotic stress cause the changes in 3-D structure of

protein from biologically active state to biologically inactive or

biologically ill-function form. Changes in 3-D structure of

proteins due to physical factors such as heat stress, salt stress

etc. include domain unfolding, domain deformation, domain

hinge motion and domain sliding motion. Domain hinge motion

is very low deformation protein and mainly it consists of domain

motion around a flexible hinge and it occurs in loops that joins

a-helices or b-sheets (Nelson and Cox, 2021). All these changes

in 3-D structure of proteins resulted in changed downstream

biochemical, physiological and phenotypic effects on plants.

Of various salt stress proteins, high affinity potassium channel

(HKT) has been studied in more detail in the mechanism of salt

exclusions and salt tolerance. Based on transport and amino acid

sequences, HKT family has been divided into two groups. The

selective pore or selectivity filter in class 1 has Ser-Gly-Gly-Gly,

whereas members of class 2 have selective pore with Gly-Gly-Gly-

Gly. Four amino acids are placed on top of the four short loops or

P-loop and make it as selectivity filter (Figure 3). The selective

filters transport the Na+ ion selectively from xylem vessel to

xylem parenchyma cells as xylem-Na-unloading process.

The position of serine and glycine in selective pore is highly

important in its ion transport capacity. For example, presence of

serine favors the transport of Na+ only, whereas presence of glycine

facilitates the transport of both K+ and Na+ ions. However, some

studies have shown that HKT protein from class one has ability to

transport of both K+ and Na+ ions in opposite directions. Similarly,

TmHKT1;5 and TaHKT1;5 improved the salt tolerance by

increasing Na+ exclusion. It has been observed that class 1 HKT

channel played role inmaintenance of K+, andNa+ unloading from

root xylem parenchyma cells (Xu et al., 2018). In addition, class 1
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HKT channel played role in salt tolerance of salt tolerant cultivar

but not in salt sensitive cultivar. These results indicated that Na+

and/K+ selectivity for transport through HKT channel is not

determined by selective pore alone, but it requires functioning of

some other protein motifs as it determines the ion-transport

capacity. Sequence comparison and amino-acid sequence of

protein from both cultivars indicated variation in amino acid

sequence at 140 (P/A/T/I), 184 (H/R), 332 (D/H) and at position

395 (V/L). Two amino acid variation occur in loop region between

transmembrane domain 2 and 3 (TMD2 and TMD3), one in

between TMD4 and TMD5 and one in between TMD5 and

TMD6. While assessing association of amino acid substitution in

class 1 HKT gene with salt tolerance in rice genotypes Shohan et al.

(2019) found that amino acid substitution at position 140 (P/A/T/

I) and 184 (R/H) were present in both salt tolerant and salt

sensitive cultivars and thus these are not conserved in the

context salt tolerance. In addition, aspartate at 332 and valine at

395 position is highly conserved in salt tolerant rice and wheat

cultivars (Shohan et al., 2019). Three-dimensional structural

analysis of HKT1;5 showed that both these amino acids (aspratic

acid at 332 and valine at 395) lie on the opening ends of channel

but at the opposite sides. For example, valine is located at the

opening of channel towards xylem vessel, whereas aspartic acid lies

at the opening channel toward xylem parenchyma cell. Position of

both these amino acids is very strategic in controlling K+/Na+

transport and salt tolerance in plants. For example, histidine at

position 332 lies in vicinity of large extra-cellular loop and at

constriction of channel opening, which make Na+ passage difficult

for entry in salt sensitive cultivar (Figure 5). However, aspartate

make the extra cellular loop more dynamic and away from the

channel opening thus it is helpful in Na+ efflux under normal or

salt stress conditions (Shohan et al., 2019; Pulipati et al., 2022).
5 Conclusion and prospects

This review discussed various proteins involved in the

complex salt tolerance mechanism of plants, with functions

ranging from metabolism to ion homeostasis, maintaining water

status to protect cellular structures, ROS scavenging to integrate

signals at ROS and Ca2+ signaling hubs, and modulating

physiological responses for developmental changes. Based on

review of these studies, several promising protein indicators for

salt tolerance are suggested, which include photosynthetic

proteins (Psb27, LHCs, D2, rubisco, rubisco activase, sedo-

heptulose-1,7 bisphosphatase), antioxidant enzymes (Cu/Zn-

superoxide dismutase, peroxidase, glutathione reductase,

catalase), mitochondrial and cellular respiration related proteins

(glyceraldehyde-3-phosphate dehydrogenase, phospho-

fructokinase, NAD(P)H-quinone oxido-reductase), ion transport

related proteins (NHX, HKT1, HKT2, NRT1, NRT2), water

transport related proteins (aquaporins, PIPs, NIPs), osmotic

adjustment related proteins (P5CS, BADH, osmotin like protein,
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OSML13; dehydrin early responsive protein, ERD14; germins and

germin like proteins, GLP9 etc.), cell wall modifications related

(CCOMT, Extensins, expansins), salt stress sensors (RLKs, CaM,

CBL, CIPKs) and transcription factors (MYB, NAC, WRKY,

SnRK, bZIP). Several studies of comparative proteome profiling

have shown abundance of salt stress proteins in halophytes or salt

tolerant genotypes of same species under salt stress, which indicate

their strong contribution in plant salt tolerance. Genes of these

candidate protein markers can be utilized for the development of

transgenics to improve salt tolerance in crops. A very few

examples have been found about development of salt tolerant

transgenics by overexpression of genes of these candidate proteins.

Despite a Web of Science search on proteome profiling under salt

stress revealing more than 2,000 reports, few success stories are

available (Mansour and Hassan, 2022). Possible reasons for such

poor success include the lack of interest in translating research

into goods and services due to impecunious and improper

research policies in universities (Gilliham et al., 2017), serious

doubts for gene discovery research and experimental flaws

(Flowers, 2004; Blum, 2014; Ashraf and Munns, 2022), and a

misunderstanding that a single gene product will yield a desirable

degree of salt tolerance (Flowers, 2004; Ashraf and Foolad, 2013;

Shabala et al., 2016; De Costa, 2018). Molecular marker-assisted

selection in breeding programs and pyramiding genes have been

recently advocated for developing salt tolerance in crops (Ashraf

and Foolad, 2013; Mujeeb-Kazi et al., 2019; Ashraf and Munns,

2022). However, some technological limitations (only a few genes

can be transferred) have made it difficult to develop salt-tolerant
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genotypes using this approach (Shabala et al., 2016). This review

discusses several salt stress proteins, only a few salt-stress proteins

have gained attention for breeders in developing salt tolerance,

including H+-ATPase, H+-PPase, Na+ and K+ transporters, and

some regulatory proteins of these systems. Identifying proteins

responsible for salt stress sensing will offer insights into

understanding their functions in salt tolerance mechanisms.

Nevertheless, understanding the detailed biochemical modes of

action and physiological roles of different proteins related to

metabolism, sensing and signaling, antioxidants, and membrane

stabilizers may add a new dimension to programs aimed at

breeding salt stress tolerant crops.
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FIGURE 5

Na+ and/K+ selectivity for transport through HKT channel is determined by selective pores and aspartate at 332 and valine at 395 position which
lie on the opening ends of channel but at the opposite sides. (A) Replacement of aspartate with histidine at position 332 that lies at the
constriction of channel opening make Na+ passage difficult for entry – inhibit the Na+ exclusion. (B). Surface view of HKT channel as open or
closed for Na+ entry. (C). Saline growth medium favors the entry of Na+ into root and then transport Na+ to leaves/shoots via xylem. HKT
channel restrict the Na+ transport from root to shoot by excluding Na+ from xylem vessel to xylem parenchyma cells. Presence of valine at 395
and aspartate at 332 enhance the Na+ exclusion from xylem to xylem-parenchyma and thus induces salt tolerance, whereas presence of leucine
at 395 and histidine at 332 reduce the Na+ exclusion and thus induces salt sensitivity (Adapted from Shohan et al., 2019; Pulipati et al., 2022).
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(2016). Characterization of two HKT1;4 transporters from triticum monococcum
to elucidate the determinants of the wheat salt tolerance Nax1 QTL. Plant Cell
Physiol. 57, 2047–2057. doi: 10.1093/pcp/pcw123

Tsay, Y. F., Chiu, C. C., Tsai, C. B., Ho, C. H., and Hsu, P. K. (2007). Nitrate
transporters and peptide transporters. FEBS Lett. 581, 2290–2300. doi: 10.1016/
j.febslet.2007.04.047

Udomchalothorn, T., Maneeprasobsuk, S., Bangyeekhun, E., Boon-Long, P., and
Chadchawan, S. (2009). The role of the bifunctional enzyme, fructose-6-phosphate-
2-kinase/fructose-2,6-bisphosphatase, in carbon partitioning during salt stress and
salt tolerance in rice (Oryza sativa l.). Plant Sci. 176, 334–341. doi: 10.1016/
j.plantsci.2008.11.009
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