68 research outputs found

    Quantitative Analysis of Photo-Thermal Stability of CdSe/CdS Core-Shell Nanocrystals

    Full text link
    We report here investigations on the instability in luminescence of bare (TOPO-stabilized) and CdS- capped CdSe particles under infrared radiation. During photo-thermal annealing the formation of oxide layers on the surfaces of the particles create defect states. Consequently there is a reduction in particle size. These two effects control the light output from the samples. We make a quantitative comparison of the stability of bare CdSe and core-shell type CdSe-CdS particles under photo-annealing. Using diffusion theory, we show that the volume of the oxide layer, adhered to the crystallites, play a dominant role in controlling the luminosity of the particles.Comment: 10 pages, 4 figure

    Diffraction of light by interfering liquid surface waves

    Full text link
    Interfering liquid surface waves are generated by electrically driven vertical oscillations of two or more equispaced pins immersed in a liquid (water). The corresponding intensity distribution, resulting from diffraction of monochromatic light by the reflection phase grating formed on the liquid surface, is calculated theoretically and found to tally with experiments. The curious features of the diffraction pattern and its relation to the interference of waves on the liquid surface are used to measure the amplitude and wavelength of the resultant surface wave along the line joining the two sources of oscillation. Finally, a sample diffraction pattern obtained by optically probing surface regions where interference produces a lattice--like structure is demonstrated and qualitatively explained.Comment: 9 pages, 4 figure

    Evidence of Conformational Changes in Adsorbed Lysozyme Molecule on Silver Colloids

    Full text link
    In this article, we discuss metal-protein interactions in the Ag-lysozyme complex by spectroscopic measurements. The analysis of the variation in relative intensities of SERS bands reveal the orientation and the change in conformation of the protein molecules on the Ag surface with time. The interaction kinetics of metal-protein complexes has been analyzed over a period of three hours via both Raman and absorption measurements. Our analysis indicates that the Ag nanoparticles most likely interact with Trp-123 which is in close proximity to Phe-34 of the lysozyme molecule.Comment: 15 pages, 6 figure

    Raman and photoluminescence studies on thermally annealed porous silicon

    Get PDF
    We report Raman and Photoluminescence (PL) studies of porous silicon (PS) as a function of isochronal thermal annealing from room temperature to 900°C. The PL peak position and intensity show nonmonotonic variation with increasing temperature. The PL intensity first increases upto 100°C, then decreases till 550°C and recovers its intensity at 700 °C before it completely disappears at 800 °C. The red shifted asymmetric Raman line shape can be fitted by phonon confinement model along with the disordered silicon component. Our results clearly indicate that the origin of visible PL can be better explained by a new hybrid model which incorporates both nanostructures for quantum confinement and silicon complexes (such as SiHx and siloxene) and defects at Si/SiO2 interfaces as luminescent centres

    A non-destructive analytic tool for nanostructured materials : Raman and photoluminescence spectroscopy

    Full text link
    Modern materials science requires efficient processing and characterization techniques for low dimensional systems. Raman spectroscopy is an important non-destructive tool, which provides enormous information on these materials. This understanding is not only interesting in its own right from a physicist's point of view, but can also be of considerable importance in optoelectronics and device applications of these materials in nanotechnology. The commercial Raman spectrometers are quite expensive. In this article, we have presented a relatively less expensive set-up with home-built collection optics attachment. The details of the instrumentation have been described. Studies on four classes of nanostructures - Ge nanoparticles, porous silicon (nanowire), carbon nanotubes and 2D InGaAs quantum layers, demonstrate that this unit can be of use in teaching and research on nanomaterials.Comment: 32 pages, 13 figure
    • …
    corecore