2 research outputs found

    Quantification of dengue virus specific T cell responses and correlation with viral load and clinical disease severity in acute dengue infection.

    No full text
    BackgroundIn order to understand the role of dengue virus (DENV) specific T cell responses that associate with protection, we studied their frequency and phenotype in relation to clinical disease severity and resolution of viraemia in a large cohort of patients with varying severity of acute dengue infection.Methodology/principal findingsUsing ex vivo IFNγ ELISpot assays we determined the frequency of dengue viral peptide (DENV)-NS3, NS1 and NS5 responsive T cells in 74 adult patients with acute dengue infection and examined the association of responsive T cell frequency with the extent of viraemia and clinical disease severity. We found that total DENV-specific and DENV-NS3-specific T cell responses, were higher in patients with dengue fever (DF), when compared to those with dengue haemorrhagic fever (DHF). In addition, those with DF had significantly higher (p = 0.02) DENV-specific T cell responses on day 4 of infection compared to those who subsequently developed DHF. DENV peptide specific T cell responses inversely correlated with the degree of viraemia, which was most significant for DENV-NS3 specific T cell responses (Spearman's r = -0.47, p = 0.0003). The frequency of T cell responses to NS1, NS5 and pooled DENV peptides, correlated with the degree of thrombocytopenia but had no association with levels of liver transaminases. In contrast, total DENV-IgG inversely correlated with the degree of thrombocytopenia and levels of liver transaminases.Conclusions/significanceEarly appearance of DENV-specific T cell IFNγ responses before the onset of plasma leakage, appears to associate with milder clinical disease and resolution of viraemia, suggesting a protective role in acute dengue infection

    A preliminary study on efficacy of rupatadine for the treatment of acute dengue infection

    No full text
    Abstract Currently there are no specific treatments available for acute dengue infection. We considered that rupatadine, a platelet-activating factor receptor inhibitor, might modulate dengue-associated vascular leak. The effects of rupatadine were assessed in vitro, and in a dengue model, which showed that rupatadine significantly reduced endothelial permeability by dengue sera in vitro, and significantly inhibited the increased haematocrit in dengue-infected mice with dose-dependency. We conducted a randomised, placebo-controlled trial in 183 adult patients in Sri Lanka with acute dengue, which showed that rupatadine up to 40 mg daily appeared safe and well-tolerated with similar proportions of adverse events with rupatadine and placebo. Although the primary end-point of a significant reduction in fluid leakage (development of pleural effusions or ascites) was not met, post-hoc analyses revealed small but significant differences in several parameters on individual illness days - higher platelet counts and lower aspartate-aminotransferase levels on day 7 in the rupatadine group compared to the placebo group, and smaller effusions on day 8 in the subgroup of patients with pleural effusions. However, due to the small sample size and range of recruitment time, the potential beneficial effects of rupatadine require further evaluation in large studies focused on recruitment during the early febrile phase
    corecore