1,378 research outputs found

    Energetics and crystal chemistry of Ruddlesden-Popper type structures in high T(sub c) ceramic superconductors

    Get PDF
    The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is seen in these oxides which is similar in many respects to what is seen in the system Sr-Ti-O. However, it was observed that there are some significant differences, for example the rocksalt and perovskite blocks in new superconducting compounds are not necessarily electrically, unlike in Sr-Ti-O systems. This will certainly render an additional coulombic bonding energy between two different types of blocks and may well lead to significant differences in their structural chemistry. In the higher order members of the various homologous series, additional Cu-O planes are inserted in the perovskite blocks. In order for the unit cell to electrically neutral the net positive charge on rocksalt block (which remains constant throughout the homologous series) should be balanced by an equal negative charge on perovskite block. It, thus becomes necessary to create oxygen vacancies in the basic perovskite structure, when width of the perovskite slab changes on addition of extra Cu-O planes. Results of atomistic simulations suggest that these missing oxygen ions allow the Cu-O planes to buckle in these compounds. This is also supported by the absence of buckling in the first member of Bi-containing compounds in which there are no missing oxygen ions and the Sr-Ti-O series of compounds. Additional results are presented on the phase stability of polytypoid structures in these crystal chemically complex systems. The studies will focus on the determination of the location of Cu(3+) in the structures of higher order members of the La-Cu-O system and whether Cu(3+) ions or oxygen vacancies are energetically more favorable charge compensating mechanism

    The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity

    Full text link
    This work presents a general unified theory for coupled nonlinear elastic and inelastic deformations of curved thin shells. The coupling is based on a multiplicative decomposition of the surface deformation gradient. The kinematics of this decomposition is examined in detail. In particular, the dependency of various kinematical quantities, such as area change and curvature, on the elastic and inelastic strains is discussed. This is essential for the development of general constitutive models. In order to fully explore the coupling between elastic and different inelastic deformations, the surface balance laws for mass, momentum, energy and entropy are examined in the context of the multiplicative decomposition. Based on the second law of thermodynamics, the general constitutive relations are then derived. Two cases are considered: Independent inelastic strains, and inelastic strains that are functions of temperature and concentration. The constitutive relations are illustrated by several nonlinear examples on growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity of shells. The formulation is fully expressed in curvilinear coordinates leading to compact and elegant expressions for the kinematics, balance laws and constitutive relations

    Leaf Damage and Associated Cues Induce Aggressive Ant Recruitment in a Neotropical Ant-Plant

    Full text link
    Induced chemical responses following herbivory are common in plants. Plant responses that change the level of physical or biotic defense are less well documented and poorly understood. Many Azteca spp. ants are obligate inhabitants of Cecropia spp. trees. In such ant–plant associations the ants are thought to be analogous to chemical defenses; previous experiments have demonstrated that ant occupation of C. obtusifolia reduced herbivory and plant competition and increased growth. Experiments, conducted over two years, on the dynamics of ant defense demonstrate that leaf damage caused a fivefold increase in the number of Azteca spp. ants on damaged leaves of C. obtusifolia compared to that on disturbed but undamaged control leaves. Ant activity peaked 8–12 min after damage, and differences between damaged and control leaves remained evident for 24 h. Such rapid induction of ant recruitment is likely to be particularly effective against unpredictable and mobile herbivores. The magnitude of the induced ant response to damage was strongly correlated with the number of ants patrolling the leaves before damage occurred. Ant responses to disturbance were not influenced by the presence of damage that had been applied 24 h previously. However, ant responses to subsequent damage, 24 h after initial damage, resulted in greater recruitment than to previously undamaged leaves. Ant recruitment to several other cues associated with herbivory was also tested. Presence of pyralid caterpillars that naturally feed on C. obtusifolia induced a low level of ant recruitment, and most larvae were removed from leaves by the ants within 10 min. Exposure to plant sap collected from damaged conspecifics and a commercially available green leaf volatile (hexanal) commonly released by plants after damage, both resulted in a doubling of ant numbers relative to controls. However, the levels of recruitment in response to these stimuli were insufficient to account for the high numbers of ants and persistence of recruitment observed on experimentally damaged leaves. Experimental wounding of leaves with minimal leaf tissue removal (using pin pricks) revealed that leaf wounds per se can only partially explain the induced ant recruitment following leaf damage. The type of herbivory and size of leaf wounds may be important cues for ant recruitment. Severed C. obtusifolia leaves that were freshly damaged failed to elicit an induced ant response when held adjacent to conspecific leaves with ants. However, induction of ant recruitment on damaged plants did significantly induce a low level of ant recruitment on neighboring conspecifics, providing evidence for interplant communication. Induced ant responses in the Cecropia–Azteca system are the result of multiple physical and chemical cues associated with herbivory. Ant responses to herbivory, although not previously studied in detail, are likely to be common among myrmecophytic plants and are likely to be an important component of antiherbivore defense in such systems.Funding for this study was provided by a Graduate Fellowship from the Organization for Tropical Studies and grants from the Center for Population Biology at the University of California–Davis, the Jastro Shields Research Awards Program (U.C. Davis), the Northern California Chapter of Phi Beta Kappa, and National Science Foundation Dissertation Improvement Grant DEB?9701109

    Hybrid Statistical Data Mining Framework for Multi-Commodity Fixed Charge Network Flow Problem

    Get PDF
    This paper presents a new approach to analyze the network structure in multi-commodity fixed charge network flow problems (MCFCNF). This methodology uses historical data produced from repeatedly solving the traditional MCFCNF mathematical model as input for the machine-learning framework. Further, we reshape the problem as a binary classification problem and employ machine-learning algorithms to predict network structure. This predicted network structure is further used as an initial solution for our mathematical model. The quality of the initial solution generated is judged on the basis of predictive accuracy, feasibility and reduction in solving time

    A Generative Model For Zero Shot Learning Using Conditional Variational Autoencoders

    Full text link
    Zero shot learning in Image Classification refers to the setting where images from some novel classes are absent in the training data but other information such as natural language descriptions or attribute vectors of the classes are available. This setting is important in the real world since one may not be able to obtain images of all the possible classes at training. While previous approaches have tried to model the relationship between the class attribute space and the image space via some kind of a transfer function in order to model the image space correspondingly to an unseen class, we take a different approach and try to generate the samples from the given attributes, using a conditional variational autoencoder, and use the generated samples for classification of the unseen classes. By extensive testing on four benchmark datasets, we show that our model outperforms the state of the art, particularly in the more realistic generalized setting, where the training classes can also appear at the test time along with the novel classes

    Phylogenetic escalation and decline of plant defense strategies

    Full text link
    As the basal resource in most food webs, plants have evolved myriad strategies to battle consumption by herbivores. Over the past 50 years, plant defense theories have been formulated to explain the remarkable variation in abundance, distribution, and diversity of secondary chemistry and other defensive traits. For example, classic theories of enemy-driven evolutionary dynamics have hypothesized that defensive traits escalate through the diversification process. Despite the fact that macroevolutionary patterns are an explicit part of defense theories, phylogenetic analyses have not been previously attempted to disentangle specific predictions concerning (i) investment in resistance traits, (ii) recovery after damage, and (iii) plant growth rate. We constructed a molecular phylogeny of 38 species of milkweed and tested four major predictions of defense theory using maximum-likelihood methods. We did not find support for the growth-rate hypothesis. Our key finding was a pattern of phyletic decline in the three most potent resistance traits (cardenolides, latex, and trichomes) and an escalation of regrowth ability. Our neontological approach complements more common paleontological approaches to discover directional trends in the evolution of life and points to the importance of natural enemies in the macroevolution of species. The finding of macroevolutionary escalating regowth ability and declining resistance provides a window into the ongoing coevolutionary dynamics between plants and herbivores and suggests a revision of classic plant defense theory. Where plants are primarily consumed by specialist herbivores, regrowth (or tolerance) may be favored over resistance traits during the diversification processThis work was supported by the National Science Foundation

    Delay Optimal Event Detection on Ad Hoc Wireless Sensor Networks

    Full text link
    We consider a small extent sensor network for event detection, in which nodes take samples periodically and then contend over a {\em random access network} to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center to process the measurements. The Bayesian setting is assumed; i.e., the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is \emph{network-oblivious} and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is \emph{network-aware} and processes measurements as they arrive, but in a time causal order. In this case, the decision statistic depends on the network delays as well, whereas in the network-oblivious case, the decision statistic does not depend on the network delays. This yields a Bayesian change detection problem with a tradeoff between the random network delay and the decision delay; a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network--oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network--aware case, the optimal stopping problem is analysed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient statistic for decision is found to be the network-state and the posterior probability of change having occurred given the measurements received and the state of the network. The optimal regimes are studied using simulation.Comment: To appear in ACM Transactions on Sensor Networks. A part of this work was presented in IEEE SECON 2006, and Allerton 201

    Long range dependence in network traffic and the closed loop behaviour of buffers under adaptive window control

    Get PDF
    We consider an Internet link carrying http-like traffic, i.e., transfers of finite volume files arriving at random time instants. These file transfers are controlled by an adaptive window protocol (AWP); an example of such a protocol is TCP. We provide analysis for the auto-covariance function of the AWP-controlled traffic into the link's buffer; this traffic, in general, cannot be represented by an on-off process. The analysis establishes that, for TCP-controlled transfer of Pareto-distributed file sizes with infinite second moment, the traffic into the link buffer is long range-dependent (LRD). We also develop an analysis for obtaining the stationary distribution of the link buffer occupancy under an AWP-controlled transfer of files sampled from some distribution. For any AWP, the analysis provides us with the Laplace-Stieltjes transform (LST) of the distribution of the link buffer occupancy process in terms of the functions defining the AWP and the file size distribution. The analysis also provides a necessary and a sufficient condition for the finiteness of the mean link buffer content; these conditions again have explicit dependence on the AWP used and the file size distribution. This establishes the sensitivity of the buffer occupancy process to the file size distribution. Combining the results from the above analyses, we provide various examples in which the closed loop control of an AWP results in finite mean link buffer occupancy even though the file sizes are Pareto-distributed (with infinite second moment), and the traffic into the link buffer is long range-dependent (with Hurst parameters which would suggest an infinite mean queue occupancy under open loop analysis). We also study the effect of window reductions due to active queue management and find that window reductions lead to further lightening of the tail of buffer occupancy distribution. The significance of this work is three-fold: (i) by looking at the window evolution as a function of the amount of data served and not as a function of time, this work provides a new framework for analysing various processes related to the link buffer under AWP-controlled transfer of files with a general file size distribution; (ii) it indicates that the buffer behaviour in the Internet may not be as poor as predicted from an open loop analysis of a queue fed with LRD traffic; and (iii) it shows that the buffer behaviour (and hence the throughput performance for finite buffers) is sensitive to the distribution of file sizes
    corecore