23 research outputs found

    Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages

    Get PDF
    Abstract Background Interleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined. Results Human macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone. Conclusions Together, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.http://deepblue.lib.umich.edu/bitstream/2027.42/78250/1/1471-2172-11-52.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78250/2/1471-2172-11-52.pdfPeer Reviewe

    Chemokine (C-C motif) ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibrocytes are a population of circulating bone-marrow-derived cells that express surface markers for leukocytes and mesenchymal cells, and are capable of differentiating into myofibroblasts. They have been observed at sites of active fibrosis and increased circulating numbers correlate with mortality in idiopathic pulmonary fibrosis (IPF). Inhibition of chemokine (C-C motif) receptor 2 (CCR2) during experimental models of lung fibrosis reduces lung collagen deposition, as well as reducing lung fibrocyte accumulation. The aim of the present study was to determine whether human and mouse fibrocytes express functional CCR2.</p> <p>Results</p> <p>Following optimized and identical human and murine fibrocyte isolation, both cell sources were shown to be positive for CCR2 by flow cytometry and this expression colocalized with collagen I and CD45. Human blood fibrocytes stimulated with the CCR2 ligand chemokine (C-C motif) ligand 2 (CCL2), demonstrated increased proliferation (<it>P </it>< 0.005) and differentiation into myofibroblasts (<it>P </it>< 0.001), as well as a chemotactic response (<it>P </it>< 0.05). Murine fibrocytes also responded to CCR2 stimulation, with CCL12 being more potent than CCL2.</p> <p>Conclusions</p> <p>This study directly compares the functional responses of human and murine fibrocytes to CCR2 ligands, and following comparable isolation techniques. We have shown comparable biological effects, strengthening the translatability of the murine models to human disease with respect to targeting the CCR2 axis to ameliorate disease in IPF patients.</p

    Fecal Microbiota Signatures Are Associated with Response to Ustekinumab Therapy among Crohn’s Disease Patients

    No full text
    The fecal microbiota is a rich source of biomarkers that have previously been shown to be predictive of numerous disease states. Less well studied is the effect of immunomodulatory therapy on the microbiota and its role in response to therapy. This study explored associations between the fecal microbiota and therapeutic response of Crohn’s disease (CD) patients treated with ustekinumab (UST; Stelara) in the phase 2 CERTIFI study. Using stool samples collected over the course of 22 weeks, the composition of these subjects’ fecal bacterial communities was characterized by sequencing the 16S rRNA gene. Subjects in remission could be distinguished from those with active disease 6 weeks after treatment using random forest models trained on subjects’ baseline microbiota and clinical data (area under the curve [AUC] of 0.844, specificity of 0.831, sensitivity of 0.774). The most predictive operational taxonomic units (OTUs) that were ubiquitous among subjects were affiliated with Faecalibacterium and Escherichia or Shigella. The median baseline community diversity in subjects in remission 6 weeks after treatment was 1.7 times higher than that in treated subjects with active disease (P = 0.020). Their baseline community structures were also significantly different (P = 0.017). Two OTUs affiliated with Faecalibacterium (P = 0.003) and Bacteroides (P = 0.022) were significantly more abundant at baseline in subjects who were in remission 6 weeks after treatment than those with active CD. The microbiota diversity of UST-treated clinical responders increased over the 22 weeks of the study, in contrast to nonresponsive subjects (P = 0.012). The observed baseline differences in fecal microbiota and changes due to therapeutic response support the potential for the microbiota as a response biomarker
    corecore