80 research outputs found

    Varying effects of temperature, Ca2+ and cytochalasin on fusion activity mediated by human immunodeficiency virus type 1 and type 2 glycoproteins

    Get PDF
    AbstractWe examined fusion mediated by the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) envelope glycoproteins under various experimental conditions. Incubation of HeLa cells expressing HIV-2ROD and HIV-2SBL/ISY envelope glycoproteins with HeLa-CD4 target cells resulted in fusion at temperatures ≥25°C whereas fusion with cells expressing HIV-1Lai occurred only at ≥31°C. HIV-2 envelope glycoprotein-mediated fusion proceeded in the absence of Ca2+ in the culture medium, whereas HIV-1 fusion required Ca2+ ions for fusion. In contrast to HIV-2 envelope glycoprotein fusion, incubations in the presence of the 0.5 μM cytochalasin B completely inhibited HIV-1 envelope glycoprotein-mediated fusion. Our results suggest that in contrast to HIV-2, HIV-1 fusion is dependent on dynamic processes in the target membrane

    Protection of mice against Plasmodium berghei infection by a tuftsin derivative

    Get PDF
    In Plasmodium berghei infections, the mortality rate and parasitaemias were significantly reduced and the mean survival time was considerably enhanced by pretreating the animals with a tuftsin derivative, Thr-Lys-Pro-Arg-NH-(CH2)2-NHCOC15H31. This effect of the modified tuftsin was further increased upon its incorporation in the liposome bilayer. These results indicate that tuftsin and its derivatives may prove useful in enhancing nonspecific host resistance against protozoan infections

    Pathway Editing Targets for Thiamine Biofortification in Rice Grains

    Get PDF
    Thiamine deficiency is common in populations consuming polished rice as a major source of carbohydrates. Thiamine is required to synthesize thiamine pyrophosphate (TPP), an essential cofactor of enzymes of central metabolism. Its biosynthesis pathway has been partially elucidated and the effect of overexpression of a few genes such as thi1 and thiC, on thiamine accumulation in rice has been reported. Based on current knowledge, this review focuses on the potential of gene editing in metabolic engineering of thiamine biosynthesis pathway to improve thiamine in rice grains. Candidate genes, suitable for modification of the structural part to evolve more efficient versions of enzymes in the pathway, are discussed. For example, adjacent cysteine residues may be introduced in the catalytic domain of thi4 to improve the turn over activity of thiamine thiazole synthase 2. Motif specific editing to modify promoter regulatory regions of genes is discussed to modulate gene expression. Editing cis acting regulatory elements in promoter region can shift the expression of transporters and thiamine binding proteins to endosperm. This can enhance dietary availability of thiamine from rice grains. Differential transcriptomics on rice varieties with contrasting grain thiamine and functional genomic studies will identify more strategic targets for editing in future. Developing functionally enhanced foods by biofortification is a sustainable approach to make diets wholesome

    The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion

    Get PDF
    BACKGROUND: HIV-1 entry into cells is a multifaceted process involving target cell CD4 and the chemokine receptors, CXCR4 or CCR5. The lipid composition of the host cell plays a significant role in the HIV fusion process as it orchestrates the appropriate disposition of CD4 and co-receptors required for HIV-1 envelope glycoprotein (Env)-mediated fusion. The cell membrane is primarily composed of sphingolipids and cholesterol. The effects of lipid modulation on CD4 disposition in the membrane and their role in HIV-1 entry have extensively been studied. To focus on the role of lipid composition on chemokine receptor function, we have by-passed the CD4 requirement for HIV-1 Env-mediated fusion by using a CD4-independent strain of HIV-1 Env. RESULTS: Cell fusion mediated by a CD4-independent strain of HIV-1 Env was monitored by observing dye transfer between Env-expressing cells and NIH3T3 cells bearing CXCR4 or CCR5 in the presence or absence of CD4. Chemokine receptor signaling was assessed by monitoring changes in intracellular [Ca(2+)] mobilization induced by CCR5 or CXCR4 ligand. To modulate target membrane cholesterol or sphingolipids we used Methyl-β-cyclodextrin (MβCD) or 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), respectively. Treatment of the target cells with these agents did not change the levels of CD4 or CXCR4, but reduced levels of CCR5 on the cell surface. Chemokine receptor signalling was inhibited by cholesterol removal but not by treatment with PPMP. HIV-1 Env mediated fusion was inhibited by >50% by cholesterol removal. Overall, PPMP treatment appeared to slow down the rates of CD4-independent HIV-1 Env-mediated Fusion. However, in the case of CXCR4-dependent fusion, the differences between untreated and PPMP-treated cells did not appear to be significant. CONCLUSION: Although modulation of cholesterol and sphingolipids has similar effects on CD4 -dependent HIV-1 Env-mediated fusion, sphingolipid modulation had little effect on CD4-independent HIV-1 Env-mediated fusion. Chemokine receptor function remained intact following treatment of cells with PPMP. Therefore such treatment may be considered a more suitable agent to inhibit CD4 dependent HIV-1 infection

    Introduction, phytochemistry, traditional uses and biological activity of genus Piper: a review

    No full text
    Piper, the pepper plants or pepper vines are an economically and ecologically important genus in the family Piperaceae. It contains about 1,000-2,000 species of shrubs, herbs, and lianas, many of which are keystone species in their native habitat. Piper species have a pan tropical distribution, and are most commonly found in the understory of lowland tropical rainforests, but can also occur in clearings and in higher elevation life zones such as cloud forests. Most Piper species are either herbaceous or vines; some grow as shrubs or almost as small trees. Many species of piper have been used for treating different diseases in many traditions. E.g P. cubeba has been used in folk medicine, herbalism as well as in the early 20th century, as a cigarette flavoring. P. darienense is used medically by the Kuna people of the Panama-Colombia border region, and elsewhere it is used to intoxicate fish which then can be easily caught. Black Pepper (P. nigrum) essential oil is sometimes used in herbalism, and Long Pepper (P. longum) is similarly employed in Ayurveda, where it was an ingredient of Triphala Guggulu and (together with Black Pepper) of Trikatu pills, used for rasayana (rejuvenating and detoxifying) purposes
    • …
    corecore