22 research outputs found

    c-Src inhibition improves cardiovascular function but not remodeling or fibrosis in Ang II-induced hypertension

    Get PDF
    c-Src plays an important role in angiotensin II (Ang II) signaling. Whether this member of the Src family kinases is involved in the development of Ang II–induced hypertension and associated cardiovascular damage in vivo remains unknown. Here, we studied Ang II–infused (400 ng/kg/min) mice in which c-Src was partially deleted (c-Src+/−) and in wild-type (WT, c-Src+/+) mice treated with a c-Src inhibitor (CGP077675; 25 mg/kg/d). Ang II increased blood pressure and induced endothelial dysfunction in WT mice, responses that were ameliorated in c-Src+/− and CGP077675-treated mice. Vascular wall thickness and cross-sectional area were similarly increased by Ang II in WT and c-Src+/− mice. CGP077675 further increased cross-sectional area in hypertensive mice. Cardiac dysfunction (ejection fraction and fractional shortening) in Ang II–infused WT mice was normalized in c-Src+/− mice. Increased oxidative stress (plasma thiobarbituric acid–reactive substances, hydrogen peroxide, and vascular superoxide generation) in Ang II–infused WT mice was attenuated in c-Src–deficient and CGP077675-treated mice. Hyperactivation of vascular c-Src, ERK1/2 (extracellular signal–regulated kinase 1/2), and JNK (c-Jun N-terminal kinase) in hypertensive mice was normalized in CGP077675-treated and c-Src+/− mice. Vascular fibronectin was increased by Ang II in all groups and further augmented by CGP077675. Cardiac fibrosis and inflammation induced by Ang II were amplified in c-Src+/− and CGP-treated mice. Our data indicate that although c-Src downregulation attenuates development of hypertension, improves endothelial and cardiac function, reduces oxidative stress, and normalizes vascular signaling, it has little beneficial effect on fibrosis. These findings suggest a divergent role for c-Src in Ang II–dependent hypertension, where c-Src may be more important in regulating redox-sensitive cardiac and vascular function than fibrosis and remodeling

    Transient receptor potential melastatin 7 cation channel kinase new player in angiotensin II–induced hypertension

    Get PDF
    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg2+)/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase–deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg2+ was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II–infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule–1 expression was increased in Ang II–infused TRPM7 kinase–deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II–treated groups. In TRPM7 kinase–deficient mice, Ang II–induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II–induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II–induced hypertension and associated vascular and target organ damage

    Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its α-kinase domain

    Get PDF
    We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase

    Renoprotective effects of atorvastatin in diabetic mice: downregulation of RhoA and upregulation of Akt/GSK3

    Get PDF
    Potential benefits of statins in the treatment of chronic kidney disease beyond lipid-lowering effects have been described. However, molecular mechanisms involved in renoprotective actions of statins have not been fully elucidated. We questioned whether statins influence development of diabetic nephropathy through reactive oxygen species, RhoA and Akt/GSK3 pathway, known to be important in renal pathology. Diabetic mice (db/db) and their control counterparts (db/+) were treated with atorvastatin (10 mg/Kg/day, p.o., for 2 weeks). Diabetes-associated renal injury was characterized by albuminuria (albumin:creatinine ratio, db/+: 3.2 ± 0.6 vs. db/db: 12.5 ± 3.1*; *P<0.05), increased glomerular/mesangial surface area, and kidney hypertrophy. Renal injury was attenuated in atorvastatin-treated db/db mice. Increased ROS generation in the renal cortex of db/db mice was also inhibited by atorvastatin. ERK1/2 phosphorylation was increased in the renal cortex of db/db mice. Increased renal expression of Nox4 and proliferating cell nuclear antigen, observed in db/db mice, were abrogated by statin treatment. Atorvastatin also upregulated Akt/GSK3β phosphorylation in the renal cortex of db/db mice. Our findings suggest that atorvastatin attenuates diabetes-associated renal injury by reducing ROS generation, RhoA activity and normalizing Akt/GSK3β signaling pathways. The present study provides some new insights into molecular mechanisms whereby statins may protect against renal injury in diabetes

    Magnesium, vascular function, and hypertension

    No full text
    Magnesium is an essential cation critically involved in cell viability and physiological regulation of all systems and organs. In the cardiovascular system it modulates mechanical, electrical, and structural functions of cardiac and vascular cells, and small changes in extracellular magnesium levels and/or intracellular free magnesium concentration may have profound effects on cardiac excitability, vascular tone, contractility, and reactivity. Magnesium homeostasis is tightly regulated through intestinal absorption and renal excretion and involves specific magnesium transporters, including transient receptor potential melastatin cation channels-6 and -7 and magnesium transporter subtype 1. Perturbations in magnesium metabolism may lead to cellular magnesium deficiency, which has been associated with various pathologies, including cardiovascular disease. This chapter discusses the cellular, physiological, and pharmacological roles of magnesium in the regulation of vascular function and implications of altered magnesium homeostasis in cardiovascular diseases, focusing on hypertension

    Mineralocorticoid Receptor and Rhoa/rho Kinase Contribute to Vascular Dysfunction in Obese Db/db Mice

    No full text
    Increasing evidence indicates that adipose tissue modulates vascular function. Our previous studies demonstrated that adipocytes secrete aldosterone. We hypothesized that adipocyte-releasing factors induce vascular dysfunction through mineralocorticoid receptor (MR)-dependent mechanisms. This study explored the small G protein RhoA/Rho kinase as a pathway linking aldosterone/MR and the paracrine effects of adipose tissue in the vasculature, since the activation of this pathway regulates vascular contraction. Diabetic obese mice (db/db) and their control counterparts (db/+) were treated with MR antagonist (MRA) (K canrenoate, 30mg/Kg/day, S.C., 4 weeks) or RhoA/Rho kinase inhibitor, fasudil (30 mg/Kg/day, S.C., 3 weeks). Blood pressure levels were similar between groups. Fasudil, but not MRA, reduced plasma glucose levels in db/db mice (db/+:12.3±6; db/db: 30.1±3; MRA-treated db/db: 32.5±2; fasudil treated db/db: 17.1±2; mmoL/mL). Arteries from db/db mice displayed reduced relaxation to 10-5M acetycholine (Ach; db/+:79.4±3.9% vs db/db: 14.3±3.1%). Arteries from MRA-treated db/db mice exposed to fat conditioned medium (FCM) had improved responses to Ach (MRA-treated db/db: 28.3±1.9% vs MRA-treated db/db +FCM: 42.8±4.3%). Increased norepinephrine (NE)-induced contraction was observed in db/db mice in endothelium-denuded arteries (10-5M NE; db/+: 1.5 ± 0.1 vs db/db: 2.2 ± 0.1; mN/mm). NE responses were reduced in MRA-treated db/db mice (1.7±0.1 mN/mm) or fasudil (1.6±0.2 mN/mm). Vascular calcium sensitivity was similar between depolarized arteries from db/+ and db/db. Fasudil treatment reduced calcium-induced contraction in both groups with greater effect in db/db mice (5 mmol/L CaCl2; db/+: 73 % vs db/db: 57 %). MR blockade did not affect vascular RhoA/Rho kinase activity (RhoA membrane to cytosol translocation) in db/db mice. Our data suggest that in db/db mice: MR and RhoA/Rho kinase signaling contribute to adipose modulation of vascular/contraction. While MR plays a role in vascular relaxation, RhoA/Rho kinase signalling is important in contractile dysfunction, adipocyte secretion, and glucose metabolism - processes that may contribute to cardiovascular injury in obesity-associated diabetes

    Upregulation of the mineralocorticoid system in obesity-associated diabetes leads to increased adipocyte Rho kinase activation and dysregulation of adipocytokines

    No full text
    Increased activation of the renin-angiotensin-aldosterone (RAAS) system is often associated with obesity and metabolic syndrome. We previously reported that aldosterone (aldo) produced by adipocytes regulate vascular function. Despite the fact that aldo production by adipocytes is increased in obesity, the role of aldo and its receptor, the mineralocorticoid receptor (MR), in the regulation of adipocytes biology and their downstream signaling remain elusive. Since Rho kinase (Rock) signaling has recently been implicated in the development of obesity, we tested the hypothesis that MR upregulation leads to dysregulation of adipokines through Rock-dependent mechanisms in obesity. Here we used obese db/db and lean db/+ mice, treated for 4 weeks with K canrenoate (MR antagonist, 30 mg/kg/day) and fasudil (Rock inhibitor, 30 mg/kg/day). Aldo production and Rock activation were measured by ELISA. mRNA and protein levels of adipokines and Rock signaling were assayed by real time PCR and immunoblotting. Plasma and adipocyte-derived aldo levels were increased in db/db mice (plasma: pg/mL, db/+ 310±33, db/db 567±43, p<0.05; adipocytes: pg/mL/μgRNA, db/+ 329±130, db/db 3125±494, p<0.002), an effect partially prevented by MR blockade (pg/mL/μgRNA: db/db 1278±176, p<0.01) and not by fasudil. Aldosterone synthase mRNA levels were increased (2.3 fold) as well as Nr3c2 (MR) (1.8 fold) and markers of MR activation (Sgk1 and Ngal- 2.3 and 2.9 fold) in mature adipocytes from db/db mice. In mature adipocytes from db/db, adiponectin mRNA levels were decreased (2.6 fold; p<0.01), whereas leptin and IL-6 mRNA levels were increased (2 and 4.8 fold; p<0.01). All changes were blocked by K canrenoate. Rock activity and downstream effectors, such as activation of MYPT1 and ERM, were increased in perivascular adipose tissue from db/db mice, an effect prevented by MR blockade. In conclusion, our data demonstrate that in db/db mice adipocyte MR-dependent activation of Rock is associated with a pro-inflammatory adipose phenotype that is normalized by MR blockade. Our results implicate a potential role of adipocyte aldo/MR through RhoA/Rock in adipocyte dysfunction in obesity/diabetes, important co-morbidities often associated with metabolic syndrome and hypertension

    Altered vascular reactivity in mice overexpressing adipocyte mineralocorticoid receptors - role of oxidative stress and Rho kinase

    No full text
    Aldosterone (aldo) plays a role in obesity and cardiovascular diseases, such as hypertension. We previously demonstrated that adipocyte-derived factors regulate vascular function and vascular smooth muscle cells signaling. Moreover, adipocytes express aldosterone synthase (CYP11B2) and produce aldo. The mineralocorticoid receptor (MR), which is responsible for aldo signaling, is also found in these cells, but its role in regulating adipose tissue interactions with the vasculature is unknown. In this study, we investigated mechanisms whether MR activation in adipocytes regulates vascular reactivity. Conditional transgenic mice that overexpress MR in an adipocyte-specific manner were studied. Vascular reactivity of resistance mesenteric arteries to acetylcholine (Ach), sodium nitroprusside and phenylephrine (Phe), in the absence or presence of fat conditioned medium (Fcm) from control and adipocyte overexpressing MR (MROE) mice, was performed by myography. In basal conditions, endothelial dysfunction was not observed in MROE or control (Ctr) mice. However, exposure of arteries from control mice to Fcm from MROE mice induces endothelial dysfunction (Ach 10-6M: 77.5±9.6% no Fcm vs. 49.8±7.5% Fcm, p<0.05), an effect blocked by N-acetyl-cysteine (an antioxidant) (Ach 10-6M: 82.2±6.6%). Resistance arteries from MROE mice had decreased Phe-induced contraction, compared to control mice (Phe 10-5M: 2.7±0.2 mN/mm Ctr vs. 1.7±0.2 mN/mm MROE, p<0.05). Rho Kinase activity, which regulates vascular contraction, is decreased in arteries and adipo tissue from MROE (mesenteric arteries, Ctr: 100±16.2% vs. MROE: 31.1±6.1%, arbitrary units, p<0.01; adipose tissue, Ctr: 100±12.6% vs. MROE: 51.3±9.3%, arbitrary units, p<0.01). In conclusion, MR in adipocytes may play an important role in the regulation of vascular function, through redox-sensitive pathways and activation of Rho kinase. Our study identifies novel mechanisms linking vascular/adipose tissue biology and aldo/MR activation, which may be particularly important in vascular dysfunction associated with hypertension and hyperaldosteronism

    Schneiden von Stahlblechen mit einem CO_2-Laser, industrielle Anwendung

    No full text
    TIB: FR 4373 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Adipocyte-Specific Mineralocorticoid Receptor Overexpression in Mice Is Associated With Metabolic Syndrome and Vascular Dysfunction: Role of Redox-Sensitive PKG-1 and Rho Kinase

    No full text
    Mineralocorticoid receptor (MR) expression is increased in adipose tissue from obese individuals and animals. We previously demonstrated that adipocyte-MR overexpression (Adipo-MROE) in mice is associated with metabolic changes. Whether adipocyte MR directly influences vascular function in these mice is unknown. We tested this hypothesis in resistant mesenteric arteries from Adipo-MROE mice using myography and in cultured adipocytes. Molecular mechanisms were probed in vessels/vascular smooth muscle cells and adipose tissue/adipocytes and focused on redox-sensitive pathways, Rho kinase activity, and protein kinase G type-1 (PKG-1) signaling. Adipo-MROE versus control-MR mice exhibited reduced vascular contractility, associated with increased generation of adipocyte-derived hydrogen peroxide, activation of vascular redox-sensitive PKG-1, and downregulation of Rho kinase activity. Associated with these vascular changes was increased elastin content in Adipo-MROE. Inhibition of PKG-1 with Rp-8-Br-PET-cGMPS normalized vascular contractility in Adipo-MROE. In the presence of adipocyte-conditioned culture medium, anticontractile effects of the adipose tissue were lost in Adipo-MROE mice but not in control-MR mice. In conclusion, adipocyte-MR upregulation leads to impaired contractility with preserved endothelial function and normal blood pressure. Increased elasticity may contribute to hypocontractility. We also identify functional cross talk between adipocyte MR and arteries and describe novel mechanisms involving redox-sensitive PKG-1 and Rho kinase. Our results suggest that adipose tissue from Adipo-MROE secrete vasoactive factors that preferentially influence vascular smooth muscle cells rather than endothelial cells. Our findings may be important in obesity/adiposity where adipocyte-MR expression/signaling is amplified and vascular risk increased.</jats:p
    corecore