6 research outputs found

    A Malaria Ecology Index Predicted Spatial and Temporal Variation of Malaria Burden and Efficacy of Antimalarial Interventions Based on African Serological Data.

    Get PDF
    Reducing the global health burden of malaria is complicated by weak reporting systems for infectious diseases and a paucity of vital statistics registration. This limits our ability to predict changes in malaria health burden intensity, target antimalarial resources where needed, and identify malaria impacts in retrospective data. We refined and deployed a temporally and spatially varying Malaria Ecology Index (MEI) incorporating climatological and ecological data to estimate malaria transmission strength and validate it against cross-sectional serology data from 39,875 children from seven sub-Saharan African countries. The MEI is strongly associated with malaria burden; a 1 standard deviation higher MEI is associated with a 50-117% increase in malaria risk and a 3-5 g/dL lower level of Hg. Results show that the relationship between malaria ecology and disease burden is attenuated with sufficient coverage of insecticide treated nets (ITNs) or indoor residual spraying (IRS). Having both ITNs and IRS reduce the added risk from adverse malaria ecology conditions by half. Readily available climate and ecology data can be used to estimate the spatial and temporal variation in malaria disease burden, providing a feasible alternative to direct surveillance. This will help target resources for malaria programs in the absence of national coverage of active case detection systems, and facilitate malaria research using retrospective health data

    A Malaria Ecology Index Predicted Spatial and Temporal Variation of Malaria Burden and Efficacy of Antimalarial Interventions Based on African Serological Data

    No full text
    Reducing the global health burden of malaria is complicated by weak reporting systems for infectious diseases and a paucity of vital statistics registration. This limits our ability to predict changes in malaria health burden intensity, target antimalarial resources where needed, and identify malaria impacts in retrospective data. We refined and deployed a temporally and spatially varying Malaria Ecology Index (MEI) incorporating climatological and ecological data to estimate malaria transmission strength and validate it against cross-sectional serology data from 39,875 children from seven sub-Saharan African countries. The MEI is strongly associated with malaria burden; a 1 standard deviation higher MEI is associated with a 50–117% increase in malaria risk and a 3–5 g/dL lower level of Hg. Results show that the relationship between malaria ecology and disease burden is attenuated with sufficient coverage of insecticide treated nets (ITNs) or indoor residual spraying (IRS). Having both ITNs and IRS reduce the added risk from adverse malaria ecology conditions by half. Readily available climate and ecology data can be used to estimate the spatial and temporal variation in malaria disease burden, providing a feasible alternative to direct surveillance. This will help target resources for malaria programs in the absence of national coverage of active case detection systems, and facilitate malaria research using retrospective health data

    ENSO impacts child undernutrition in the global tropics.

    No full text
    The El Niño Southern Oscillation (ENSO) is a principal component of global climate variability known to influence a host of social and economic outcomes, but its systematic effects on human health remain poorly understood. We estimate ENSO's association with child nutrition at global scale by combining variation in ENSO intensity from 1986-2018 with children's height and weight from 186 surveys conducted in 51 teleconnected countries, containing 48% of the world's under-5 population. Warmer El Niño conditions predict worse child undernutrition in most of the developing world, but better outcomes in the small number of areas where precipitation is positively affected by warmer ENSO. ENSO's contemporaneous effects on child weight loss are detectable years later as decreases in height. This relationship looks similar at both global and regional scale, and has not appreciably weakened over the last four decades. Results imply that almost 6 million additional children were underweight during the 2015 El Niño compared to a counterfactual of neutral ENSO conditions in 2015. This demonstrates a pathway through which human well-being remains subject to predictable climatic processes
    corecore