1,896 research outputs found

    Electronic Structure and Magnetic Exchange Coupling in Ferromagnetic Full Heusler Alloys

    Full text link
    Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co2_2MnZ (Z = Ga, Si, Ge, Sn), Rh2_2MnZ (Z = Ge, Sn, Pb), Ni2_2MnSn, Cu2_2MnSn and Pd2_2MnSn, and the connection between the electronic spectra and the magnetic interactions have been studied. Different mechanisms contributing to the exchange coupling are revealed. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique.Comment: 9 figures, 6 table

    Role of covalent Fe-As bonding in the magnetic moment formation and exchange mechanisms in iron-pnictide superconductors

    Get PDF
    The electronic origin of the huge magnetostructural effect in layered Fe-As compounds is elucidated using LiFeAs as a prototype. The crucial feature of these materials is the strong covalent bonding between Fe and As, which tends to suppress the exchange splitting. The bonding-antibonding splitting is very sensitive to the distance between Fe and As nuclei. We argue that the fragile interplay between bonding and magnetism is universal for this family of compounds. The exchange interaction is analyzed in real space, along with its correlation with covalency and doping. The range of interaction and itinerancy increase as the Fe-As distance is decreased. Superexchange makes a large antiferromagnetic contribution to the nearest-neighbor coupling, which develops large anisotropy when the local moment is not too small. This anisotropy is very sensitive to doping.Comment: 4+ pages, 4 color eps files; revised version accepted in Phys. Rev.

    The spin angular gradient approximation in the density functional theory

    Full text link
    A spin angular gradient approximation for the exchange correlation magnetic field in the density functional formalism is proposed. The usage of such corrections leads to a consistent spin dynamical approach beyond the local approximation. The proposed technique does not contain any approximations for the form of potential and can be used in modern full potential band structure methods. The obtained results indicate that the direct 'potential' exchange in 3d magnets is rather small compared to the indirect 'kinetic' exchange, thus justifies the dynamical aspect of the local density approximation in 3d metals

    Long range chromomagnetic fields at high temperature

    Full text link
    The magnetic mass of neutral gluons in Abelian chromomagnetic field at high temperature is calculated in SU(2)$ gluodynamics. It is noted that such type fields are spontaneously generated at high temperature. The mass is computed either from the Schwinger-Dyson equation accounting for the one-loop polarization tensor or in Monte-Carlo simulations on a lattice. In latter case, an average magnetic flux penetrating a plaquette is measured for a number of lattices. Both calculations are in agreement with each other and result in zero magnetic mass. Some applications of the results obtained are discussed.Comment: 14 pages, 1 figur
    • …
    corecore