14 research outputs found

    Transforming growth factor beta-1 (TGFB1) and peak bone mass: association between intragenic polymorphisms and quantitative ultrasound of the heel

    Get PDF
    BACKGROUND: Variance of peak bone mass has a substantial genetic component, as has been shown with twin studies examining quantitative measures such as bone mineral density (BMD) and quantitative ultrasound (QUS). Evidence implicating single nucleotide polymorphisms (SNPs) of the transforming growth factor beta-1 (TGFB1) gene is steadily accumulating. However, a comprehensive look at multiple SNPs at this locus for their association with indices of peak bone mass has not been reported. METHODS: A cohort of 653 healthy Caucasian females 18 to 35 years old was genotyped for seven TGFB1 SNPs. Polymorphisms were detected by restriction endonuclease digestion of amplified DNA segments. RESULTS: The frequencies of the least common allele at G-800A, C-509T, codon 10 (L10P), codon 25 (R25P), codon 263 (T263I), C861-20T, and 713-8 delC loci were 0.07, 0.33, 0.41, 0.08, 0.04, 0.25 and 0.01, respectively. A significant association was seen between QUS Stiffness Index (QUS-SI) and the SNP at codon 10 and the linked promoter SNP, C-509T. This association remained significant after multiple regression was used to incorporate important clinical covariates – age, BMI, level of activity, family history, and caffeine intake – into the model. CONCLUSION: The association of QUS-SI with -509T is consistent with a gene-dose effect, while only individuals homozygous for the codon 10P allele showed a significant increase. In this cohort of young healthy Caucasian females, the T allele at position -509 is associated with greater bone mass as measured by calcaneal ultrasound

    Locating Chart Choice Based on the Decision-Making Approach

    Get PDF
    Modern manufacturing engineering requires quick and reasonable solutions during the production planning stage, ensuring production efficiency and cost reduction. This research aims to create a scientific approach to the rational choice of a locating chart for complexly shaped parts. It is an important stage during the manufacturing technology and fixture design process. The systematization of the designed and technological features of complexly shaped parts and the definition of the features that impact a locating chart create the fundamentals for justification. A scientific approach has been developed using the complex combination of the part’s features and a decision-making approach using the example of bracket-type parts. The matrix of design and technological features of parts was developed including steel AISI 3135 and cast iron DIN 1691. The classification of locating charts for bracket-type parts was defined. A mathematical model of the rational choice of the locating chart according to the structural code of the workpiece was verified in case studies from the practice. As a result, a decision-making approach was applied to the rational choice of the locating chart for any bracket-type part. The proposed solutions improve the production planning stage for machine building, automotive, and other industries

    NOD1 and NOD2 Interact with the Phagosome Cargo in Mast Cells: A Detailed Morphological Evidence

    No full text
    Mast cells (MC) play a key role in triggering the inflammatory process and share some functions with professional phagocytes. It is not clear whether or not the phagocytic process in MC follows the same route and has the same meaning of that of professional phagocytes. Herein we analyze in detail the structure of the phagosome in rat peritoneal mast cells (RPMC). The ultrastructural analysis of the phagosome, containing either model particles or bacteria, reveals that these vacuoles are very tight, and in several areas, their membrane seems to have dissolved. RPMC express NOD1 and NOD2 proteins whose role is to recognize intracellular foreign components and induce the production of pro-inflammatory mediators. Following Escherichia coli ingestion, both these molecules are found on the phagosome membrane and on ingested pathogens, together with phagosome maturation markers. These findings suggest that in RPMC the ingested cargo can, through interruptions of the phagosome membrane, interact directly with NODs, which act as switches in the process of cytokine production
    corecore