34 research outputs found

    The effect of caffeine on working memory load-­related brain activation in middle-­aged males

    Get PDF
    Klaassen, E. B., De Groot, R. H. M., Evers, E. A. T., Snel, J., Veerman, E. C. I., Ligtenberg, A. J. M., Jolles, J., & Veltman, D. J. (2013). The effect of caffeine on working memory load-related brain activation in middle-aged male. Neuropharmacology, 64, 160-167. doi:10.1016/j.neuropharm.2012.06.026Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working memory (WM) load-related activation during encoding, maintenance and retrieval phases of a WM maintenance task using functional magnetic resonance imaging (fMRI). 20 healthy, male, habitual caffeine consumers aged 40 to 61 years were administered 100 mg of caffeine in a double-blind placebo-controlled crossover design. Participants were scanned in a non-withdrawn state following a workday during which caffeinated products were consumed according to individual normal use (range = 145 – 595 mg). Acute caffeine administration was associated with increased load-related activation compared to placebo in the left and right dorsolateral prefrontal cortex during WM encoding, but decreased load-related activation in the left thalamus during WM maintenance. These findings are indicative of an effect of caffeine on the fronto-parietal network involved in the top-down cognitive control of WM processes during encoding and an effect on the prefrontal cortico-thalamic loop involved in the interaction between arousal and the top-down control of attention during maintenance. Therefore, the effects of caffeine on WM may be attributed to both a direct effect of caffeine on WM processes, as well as an indirect effect on WM via arousal modulation. Behavioral and fMRI results were more consistent with a detrimental effect of caffeine on WM at higher levels of WM load, than caffeine-related WM enhancement

    Разработка автоматизированной системы измерений количества топливного газа

    Get PDF
    Цель работы – разработка автоматизированной системы управления системы измерения количества и качества топливного газа с использованием ПЛК и выбор SCADA-системы. В этой работе была разработана система контроля и управления технологическим процессом СИКТГ на базе промышленных контроллеров Delta V MD Plus, с использованием SCADA-системы DeltaV. В процессе исследования проводились: Изучение технологического процесса в целом и его отдельных участков; Подбор датчиков и исполнительных механизмов; Изучение необходимой технической документации; Разработка и анализ схем для осуществления поставленной задачи.The purpose of the work is the development of an automated control system for measuring the quantity and quality of fuel gas using a PLC and selecting a SCADA system. In this work, a system for monitoring and controlling the technological process of SICT was developed on the basis of industrial controllers Delta V MD Plus, using the DeltaV SCADA system. In the process of research were conducted: Study of the technological process as a whole and its individual sections; Selection of sensors and actuators; Study of the necessary technical documentation; Development and analysis of schemes for the implementation of the task

    The Effect of Exercise on Salivary Viscosity

    No full text
    A common experience after exercise is the presence of a thick and sticky saliva layer on the oral surfaces, which causes a feeling of a dry mouth. Since the salivary mucin MUC5B is responsible for the visco-elastic behavior of saliva, in the present study we explored the effect of exercise on both the salivary viscosity and the secretion of MUC5B in saliva. Twenty healthy dental students performed an aerobic exercise by cycling for 15 min on cycle-ergometers at a heart rate of 130–140 beats per minute. Saliva was collected at three time points: before exercise, immediately after exercise and after 30 min recovery. Salivary flow rate, viscosity, amylase activity, total protein, carbohydrate and MUC5B concentration were determined. Salivary flow rate, protein and amylase did not change significantly. Immediately after exercise, the salivary viscosity and carbohydrate concentration were significantly higher than at baseline and after 30 min recovery. Immediately after exercise, the MUC5B concentration was significantly higher than after 30 min recovery. It is concluded that the presence of thick saliva after exercise is at least partially due to an increased secretion of MUC5B

    LFchimera: a synthetic mimic of the two antimicrobial domains of bovine lactoferrin

    No full text
    Saliva is essential for the maintenance of oral health. When salivary flow is impaired, the risk of various oral diseases such as caries and candidiasis increases drastically. Under healthy conditions, saliva provides effective protection against microbial colonization by the collaborative action of numerous host-defense molecules. This review describes how saliva has been the guideline for the design and characterization of a heterodimeric antimicrobial construct called LFchimera. This construct mimics the helical parts of two antimicrobial domains in the crystal structure of bovine lactoferrin. It shows high antimicrobial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, fungi, and parasites including biowarfare agents such as Bacillus anthracis, Burkholderia pseudomallei, and Yersinia pestis. Further, sublethal concentrations of LFchimera inhibited biofilm formation, the invasiveness of HeLa cells by Yersinia spp., and prevented haemolysis of enteropathogenic Escherichia coli, demonstrating the versatility of these peptides.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Effects of lactoferrin derived peptides on simulants of biological warfare agents

    Get PDF
    Lactoferrin (LF) is an important immune protein in neutrophils and secretory fluids of mammals. Bovine LF (bLF) harbours two antimicrobial stretches, lactoferricin and lactoferampin, situated in close proximity in the N1 domain. To mimic these antimicrobial domain parts a chimeric peptide (LFchimera) has been constructed comprising parts of both stretches (LFcin17–30 and LFampin265–284). To investigate the potency of this construct to combat a set of Gram positive and Gram negative bacteria which are regarded as simulants for biological warfare agents, the effect on bacterial killing, membrane permeability and membrane polarity were determined in comparison to the constituent peptides and the native bLF. Furthermore we aimed to increase the antimicrobial potency of the bLF derived peptides by cationic amino acid substitutions. Overall, the bactericidal activity of the peptides could be related to membrane disturbing effects, i.e. membrane permeabilization and depolarization. Those effects were most prominent for the LFchimera. Arginine residues were found to be crucial for displaying antimicrobial activity, as lysine to arginine substitutions resulted in an increased antimicrobial activity, affecting mostly LFampin265–284 whereas arginine to lysine substitutions resulted in a decreased bactericidal activity, predominantly in case of LFcin17–30

    Deleted in Malignant Brain Tumors-1 Protein (DMBT1): A Pattern Recognition Receptor with Multiple Binding Sites

    Get PDF
    (DMBT1 SAG), and lung glycoprotein-340 (DMBT1 GP340) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide an
    corecore