361 research outputs found

    Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments

    Full text link
    We present direct time- and space- resolved measurements of the electron density of femtosecond laser pulse-induced plasma filaments. The dominant nonlinearity responsible for extended atmospheric filaments is shown to be field-induced rotation of air molecules.Comment: 12 pages, 5 figure

    The effect of short ray trajectories on the scattering statistics of wave chaotic systems

    Full text link
    In many situations, the statistical properties of wave systems with chaotic classical limits are well-described by random matrix theory. However, applications of random matrix theory to scattering problems require introduction of system specific information into the statistical model, such as the introduction of the average scattering matrix in the Poisson kernel. Here it is shown that the average impedance matrix, which also characterizes the system-specific properties, can be expressed in terms of classical trajectories that travel between ports and thus can be calculated semiclassically. Theoretical results are compared with numerical solutions for a model wave-chaotic system

    Heating of Micro-protrusions in Accelerating Structures

    Full text link
    The thermal and field emission of electrons from protrusions on metal surfaces is a possible limiting factor on the performance and operation of high-gradient room temperature accelerator structures. We present here the results of extensive numerical simulations of electrical and thermal behavior of protrusions. We unify the thermal and field emission in the same numerical framework, describe bounds for the emission current and geometric enhancement, then we calculate the Nottingham and Joule heating terms and solve the heat equation to characterize the thermal evolution of emitters under RF electric field. Our findings suggest that, heating is entirely due to the Nottingham effect, that thermal runaway scenarios are not likely, and that high RF frequency causes smaller swings in temperature and cooler tips. We build a phenomenological model to account for the effect of space charge and show that space charge eliminates the possibility of tip melting, although near melting temperatures reached.Comment: 8 pages, 10 figure

    Echoes and revival echoes in systems of anharmonically confined atoms

    Full text link
    We study echoes and what we call 'revival echoes' for a collection of atoms that are described by a single quantum wavefunction and are confined in a weakly anharmonic trap. The echoes and revival echoes are induced by applying two, successive temporally localized potential perturbations to the confining potential, one at time t=0t=0, and a smaller one at time t=Ï„t=\tau. Pulse-like responses in the expectation value of position are predicted at $t \approx n\tau$ ($n=2,3,...$) and are particularly evident at $t \approx 2\tau$. A novel result of our study is the finding of 'revival echoes'. Revivals (but not echoes) occur even if the second perturbation is absent. In particular, in the absence of the second perturbation, the response to the first perturbation dies away, but then reassembles, producing a response at revival times $mT_x$ ($m=1,2,...$). Including the second perturbation at $t=\tau$, we find temporally localized responses, revival echoes, both before and after $t\approx mT_x$, e.g., at $t\approx m T_x-n \tau$ (pre-revival echoes) and at $t\approx mT_x+n\tau$, (post-revival echoes), where $m$ and $n$ are $1,2,...$ . Depending on the form of the perturbations, the 'principal' revival echoes at $t \approx T_x \pm \tau$ can be much larger than the echo at $t \approx 2\tau$. We develop a perturbative model for these phenomena, and compare its predictions to the numerical solutions of the time-dependent Schr\"odinger Equation. The scaling of the size of the various echoes and revival echoes as a function of the symmetry and size of the perturbations applied at $t=0$ and $t=\tau$ is investigated. We also study the presence of revivals and revival echoes in higher moments of position, , p>1p>1, and the effect of atom-atom interactions on these phenomena.Comment: 33 pages, 13 figures, corrected typos and added reference

    External Periodic Driving of Large Systems of Globally Coupled Phase Oscillators

    Full text link
    Large systems of coupled oscillators subjected to a periodic external drive occur in many situations in physics and biology. Here the simple, paradigmatic case of equal-strength, all-to-all sine-coupling of phase oscillators subject to a sinusoidal external drive is considered. The stationary states and their stability are determined. Using the stability information and numerical experiments, parameter space phase diagrams showing when different types of system behavior apply are constructed, and the bifurcations marking transitions between different types of behavior are delineated. The analysis is supported by results of direct numerical simulation of an ensemble of oscillators
    • …
    corecore