335 research outputs found

    Solving the excitation and chemical abundances in shocks: the case of HH1

    Get PDF
    We present deep spectroscopic (3600 - 24700 A) X-shooter observations of the bright Herbig-Haro object HH1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, HI, and He, recombination lines and H_2, ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non Local Thermal Equilibiurm codes to derive the electron temperature and density, and, for the first time, we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 - 80000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density about 10^3 cm^-3), and a more compact component (density > 10^5 cm^-3) likely associated with the hottest gas. A further neutral component is also evidenced, having temperature lass than 10000 K and density > 10^4 cm^-3. The gas fractional ionization was estimated solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This testifies the presence of dust inside the medium, with a depletion factor of Iron of about 40%.Comment: Accepted by The Astrophysical Journa

    Towards a better classification of unclear eruptive variables: the cases of V2492 Cyg, V350 Cep, and ASASSN-15qi

    Get PDF
    Eruptive variables are young stars that show episodic variations of brightness: EXors/FUors variations are commonly associated with enhanced accretion outbursts occurring at intermittent cadence of months/years (EXors) and decades/centuries (FUors). Variations that can be ascribed to a variable extinction along their line of sight are instead classified as UXors. We aim at investigating the long-term photometric behaviour of three sources classified as eruptive variables. We present data from the archival plates of the Asiago Observatory relative to the fields where the targets are located. For the sake of completeness we have also analysed the Harvard plates of the same regions that cover a much longer historical period, albeit at a lower sensitivity, however we are only able to provide upper limits. A total of 273 Asiago plates were investigated, providing a total of more than 200 magnitudes for the three stars, which cover a period of about 34 yr between 1958 and 1991. We have compared our data with more recently collected literature data. Our plates analysis of V2492 Cyg provides historical upper limits that seem not to be compatible with the level of the activity monitored during the last decade. Therefore, recently observed accretion phenomena could be associated with the outbursting episodes, more than repetitive obscuration. While a pure extinction does not seem the only mechanism responsible for the ASASSN-15qi fluctuations, it can account quite reasonably for the recent V350 Cep variations.Comment: 12 pages, accepted by A&

    Spatially resolved H_2 emission from a very low-mass star

    Full text link
    Molecular outflows from very low-mass stars (VLMSs) and brown dwarfs have been studied very little. So far, only a few CO outflows have been observed, allowing us to map the immediate circumstellar environment. We present the first spatially resolved H2 emission around IRS54 (YLW52), a ~0.1-0.2 Msun Class I source. By means of VLT SINFONI K-band observations, we probed the H2 emission down to the first ~50 AU from the source. The molecular emission shows a complex structure delineating a large outflow cavity and an asymmetric molecular jet. Thanks to the detection of several H2 transitions, we are able to estimate average values along the jet-like structure (from source position to knot D) of Av~28 mag, T~2000-3000 K, and H2 column density N(H2)~1.7x10^17 cm^-2. This allows us to estimate a mass loss rate of ~2x10^-10 Msun/yr for the warm H2 component . In addition, from the total flux of the Br Gamma line, we infer an accretion luminosity and mass accretion rate of 0.64 Lsun and ~3x10^-7 Msun/yr, respectively. The outflow structure is similar to those found in low-mass Class I and CTTS. However, the Lacc/Lbol ratio is very high (~80%), and the mass accretion rate is about one order of magnitude higher when compared to objects of roughly the same mass, pointing to the young nature of the investigated source.Comment: accepted as a Letter in A&

    On the binarity of the classical Cepheid X Sgr from interferometric observations

    Full text link
    Optical-infrared interferometry can provide direct geometrical measurements of the radii of Cepheids and/or reveal unknown binary companions of these stars. Such information is of great importance for a proper calibration of Period-Luminosity relations and for determining binary fraction among Cepheids. We observed the Cepheid X Sgr with VLTI/AMBER in order to confirm or disprove the presence of the hypothesized binary companion and to directly measure the mean stellar radius, possibly detecting its variation along the pulsation cycle. From AMBER observations in MR mode we performed a binary model fitting on the closure phase and a limb-darkened model fitting on the visibility. Our analysis indicates the presence of a point-like companion at a separation of 10.7 mas and 5.6 magK fainter than the primary, whose flux and position are sharply constrained by the data. The radius pulsation is not detected, whereas the average limb-darkened diameter results to be 1.48+/-0.08 mas, corresponding to 53+/-3 R_sun at a distance of 333.3 pc.Comment: 5 pages, 3 figures, research not

    De-biasing interferometric visibilities in VLTI-AMBER data of low SNR observations

    Full text link
    AIMS: We have found that the interferometric visibilities of VLTI-AMBER observations, extracted via the standard reduction package, are significantly biased when faint targets are concerned. The visibility biases derive from a time variable fringing effect (correlated noise) appearing on the detector. METHODS: We have developed a method to correct this bias that consists in a subtraction of the extra power due to such correlated noise, so that the real power spectrum at the spatial frequencies of the fringing artifact can be restored. RESULTS: This pre-processing procedure is implemented in a software, called AMDC and available to the community, to be run before the standard reduction package. Results obtained on simulated and real observations are presented and discussed.Comment: 7 pages, 9 figure

    The 2016-2017 peak luminosity of the pre-main sequence variable V2492 Cyg

    Get PDF
    V2492 Cyg is a young pre-main sequence star presenting repetitive brightness variations of significant amplitude (Delta R > 5 mag) whose physical origin has been ascribed to both extinction (UXor-type) and accretion (EXor-type) variability, although their mutual proportion has not been clarified yet. Recently, V2492 Cyg has reached a level of brightness ever registered in the period of its documented activity. Optical and near-infrared photometry and spectroscopy have been obtained in October 2016 and between March and July 2017. The source has remained bright until the end of May 2017, then it started to rapidly fade since the beginning of June at a rate of about 0.08 mag/day. On mid-July 2017 the source has reached the same low-brightness level as two years before. Extinction and mass accretion rate were derived by means of the luminosity of the brightest lines, in particular Halpha and Hbeta. A couple of optical high-resolution spectra are also presented to derive information on the gas kinematics. Visual extinction variations do not exceed a few magnitudes, while the mass accretion rate is estimated to vary from less than 10^-8 up to a few 10^-7 M_sun/yr. This latter is comparable to that estimated on the previous high-state in 2010, likely occurred under more severe extinction conditions. The combined analysis of the optical and near-infrared (NIR) observations extends to the present event the original suggestion that the V2492 Cyg variability is a combination of changing extinction and accretion.Comment: Accepted by A&

    POISSON project - III - Investigating the evolution of the mass accretion rate

    Full text link
    As part of the POISSON project (Protostellar Optical-Infrared Spectral Survey on NTT), we present the results of the analysis of low-resolution NIR spectra 0.9-2.4 um) of two samples of YSOs in Lupus and Serpens (52 and 17 objects), with masses 0.1-2.0 Msun and ages from 10^5 to a few 10^7 yr. After determining the accretion parameters of the Lup and Ser targets by analysing their HI near-IR emission features, we added the results to those from previous regions (investigated in POISSON with the same methodology). We obtained a final catalogue (143 objects) of mass accretion rates (Macc) derived in a homogeneous fashion and analysed how Macc correlates with M* and how it evolves in time. We derived the accretion luminosity (Lacc) and Macc for Lup and Ser objects from the Br_gamma line by using relevant empirical relationships from the literature that connect HI line luminosity and Lacc. To minimise the biases and also for self-consistency, we re-derived mass and age for each source using the same set of evolutionary tracks. We observe a correlation MaccM*^2.2, similarly to what has previously been observed in several star-forming clouds. The time variation of Macc is roughly consistent with the expected evolution in viscous disks, with an asymptotic decay that behaves as t^-1.6. However, Macc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Although part of the scattering may be related to the employed empirical relationship and to uncertainties on the single measurements, the general distribution and decay trend of the Macc points are real. These findings might be indicative of a large variation in the initial mass of the disks, of fairly different viscous laws among disks, of varying accretion regimes, and of other mechanisms that add to the dissipation of the disks, such as photo-evaporation.Comment: 18 pages, 10 figures, accepted by A&

    X-Shooter spectroscopy of young stellar objects - VI - HI line decrements

    Get PDF
    Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures. Here we perform a study of the HI decrements and line profiles, from the Balmer and Paschen lines detected in the X-Shooter spectra of a homogeneous sample of 36 T Tauri stars in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the gas physical conditions to derive a consistent picture of the HI emission mechanisms in pre-main sequence low-mass stars. We have empirically classified the sources based on their HI line profiles and decrements. We identified four Balmer decrement types (classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 10^9 cm^-3 and 5000<T<15000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log n_H > 11 cm^-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually reddened type 2 decrements. About 20% of the objects present type 3 Balmer decrements (bumpy), which cannot be reproduced with current models.Comment: 29 pages, accepted by A&

    The HH34 outflow as seen in [FeII]1.64um by LBT-LUCI

    Full text link
    Dense atomic jets from young stars copiously emit in [FeII] IR lines, which can, therefore, be used to trace the immediate environments of embedded protostars. We want to investigate the morphology of the bright [FeII] 1.64um line in the jet of the source HH34 IRS and compare it with the most commonly used optical tracer [SII]. We analyse a 1.64um narrow-band filter image obtained with the Large Binocular Telescope (LBT) LUCI instrument, which covers the HH34 jet and counterjet. A Point Spread Function (PSF) deconvolution algorithm was applied to enhance spatial resolution and make the IR image directly comparable to a [SII] HST image of the same source. The [FeII] emission is detected from both the jet, the (weak) counter-jet, and from the HH34-S and HH34-N bow shocks. The deconvolved image allows us to resolve jet knots close to about 1\arcsec from the central source. The morphology of the [FeII] emission is remarkably similar to that of the [SII] emission, and the relative positions of [FeII] and [SII] peaks are shifted according to proper motion measurements, which were previously derived from HST images. An analysis of the [FeII]/[SII] emission ratio shows that Fe gas abundance is much lower than the solar value with up to 90% of Fe depletion in the inner jet knots. This confirms previous findings on dusty jets, where shocks are not efficient enough to remove refractory species from grains.Comment: 5 pages, 4 figures, note accepted by A&
    • …
    corecore