53 research outputs found

    Management of severe hyponatremia: Infusion of hypertonic saline and desmopressin or infusion of vasopressin inhibitors?

    Get PDF
    Rapid correction of severe hyponatremia carries the risk of osmotic demyelination. Two recently introduced methods of correction of hyponatremia have diametrically opposite effects on aquaresis. Inhibitors of vasopressin V2 receptor (vaptans) lead to the production of dilute urine, whereas infusion of desmopressin causes urinary concentration. Identification of the category of hyponatremia that will benefit from one or the other treatment is critical. In general, vaptans are effective in hyponatremias presenting with concentrated urine and, with the exception of hypovolemic hyponatremia, can be used as their primary treatment. Desmopressin is effective in hyponatremias presenting with dilute urine or developing urinary dilution after saline infusion. In this setting, desmopressin infusion helps prevent overcorrection of the hyponatremia. Monitoring of the changes in serum sodium concentration as a guide to treatment changes is imperative regardless of the initial treatment of severe hyponatremia

    Alkali Therapy in Lactic Acidosis

    Get PDF
    This report attempts to frame the debate about clinical administration of sodium bicarbonate in the setting of lactic acidosis in terms of simple questions. Specifically, we address why we develop lactic acidosis in some circumstances, how acute lactic acidosis impairs cardiovascular function and why sodium bicarbonate may have deleterious effects which limit its utility. We also attempt to explore treatment alternatives to sodium bicarbonate

    Principles of Quantitative Fluid and Cation Replacement in Extreme Hyperglycemia

    Get PDF
    Hyperglycemia may cause profound deficits of water, sodium and potassium through osmotic diuresis, which continues during treatment as long as there is glucosuria. Replacement fluids should cover both the deficits at presentation and the ongoing losses during treatment. At presentation with hyperglycemia, quantitative estimates of the deficits in water, sodium and potassium are based on rapid body weight changes, which indicate changes in body water, and on the serum sodium concentration corrected to a normal serum glucose level. The corrected serum sodium concentration provides a measure of the water deficit relative to the cation deficit (sodium, plus potassium) that is useful in guiding the choice of monovalent cation concentration in the initial replacement fluids. Monitoring clinical status, serum chemistries (glucose, sodium, potassium, total carbon dioxide), urine flow rate, and urine chemistries (sodium and potassium) during the course of fluid and cation replacement therapy is critical. This monitoring guides the volume and composition of replacement solutions for deficits developing during treatment and the management of potassium balance and acid-base abnormalities, including metabolic acidosis, respiratory acidosis, rarely, and others

    Principles of Management of Severe Hyponatremia

    Get PDF
    Hyponatremia represents a serious health hazard.1 Hospitalized patients,2 nursing home residents,3 women,4,5 and children6 exhibit high frequency and/or severity of hyponatremia. Hyponatremia developing during the course of other morbid conditions increases their severity.7–10 Estimates of direct costs for treating hyponatremia in the United States ranged between 1.61and1.61 and 3.6 billion.11 Clinical manifestations of hyponatremia are universal12,13 and range from subtle (disturbances of balance, problems in cognition detected only during specific testing) to life-threatening manifestations of increased intracranial pressure with life-threatening hypoxia14–16 and noncardiac pulmonary edema.17 Although the treating physicians must make an accurate diagnosis based on well-established and described clinical criteria,1 treatment is also guided by the severity of these manifestations. The magnitude and rate of increase in serum sodium concentration ([Na]) during treatment are critical. Overcorrection of chronic hyponatremia may lead to osmotic myelinolysis,18–21 whereas undercorrection may fail to prevent life-threatening manifestations.1,2

    Fluid balance concepts in medicine: Principles and practice.

    Get PDF
    The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance

    Case Report Development of Renal Failure without Proteinuria in a Patient with Monoclonal Gammopathy of Undetermined Significance: An Unusual Presentation of AL Kappa Amyloidosis

    Get PDF
    AL amyloidosis complicating monoclonal gammopathy of undetermined significance (MGUS) has usually a predominant glomerular deposition of lambda light chain. Heavy proteinuria is one of its cardinal manifestations. A 78-year-old man with a 9-year history of IgG kappa light-chain-MGUS and normal urine protein excretion developed severe renal failure. Serum levels of kappa light chain and serum IgG had been stable while proteinuria was absent throughout the nine-year period. For the first eight years, he had stable stage III chronic kidney disease attributed to bladder outlet obstruction secondary to prostatic malignancy. In the last year, he developed progressive serum creatinine elevation, without any increase in the serum or urine levels of paraproteins or any sign of malignancy. Renal ultrasound and furosemide renogram showed no evidence of urinary obstruction. Renal biopsy revealed AL amyloidosis, with reactivity exclusive for kappa light chains, affecting predominantly the vessels and the interstitium. Glomerular involvement was minimal. Melphalan and prednisone were initiated. However, renal function continues deteriorating. Deposition of AL kappa amyloidosis developing during the course of MGUS predominantly in the wall of the renal vessels and the renal interstitium, while the involvement of the glomeruli is minimal, leads to progressive renal failure and absence of proteinuria. Renal biopsy is required to detect both the presence and the sites of deposition of renal AL kappa light chain amyloidosis

    Mycobacterium chelonae

    No full text

    The renal concentrating mechanism and the clinical consequences of its loss

    No full text
    The integrity of the renal concentrating mechanism is maintained by the anatomical and functional arrangements of the renal transport mechanisms for solute (sodium, potassium, urea, etc) and water and by the function of the regulatory hormone for renal concentration, vasopressin. The discovery of aquaporins (water channels) in the cell membranes of the renal tubular epithelial cells has elucidated the mechanisms of renal actions of vasopressin. Loss of the concentrating mechanism results in uncontrolled polyuria with low urine osmolality and, if the patient is unable to consume (appropriately) large volumes of water, hypernatremia with dire neurological consequences. Loss of concentrating mechanism can be the consequence of defective secretion of vasopressin from the posterior pituitary gland (congenital or acquired central diabetes insipidus) or poor response of the target organ to vasopressin (congenital or nephrogenic diabetes insipidus). The differentiation between the three major states producing polyuria with low urine osmolality (central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia) is done by a standardized water deprivation test. Proper diagnosis is essential for the management, which differs between these three conditions.Keywords: Central diabetes insipidus, hypernatremia, hypertonicity, nephrogenic diabetes insipidus, urine concentration, vasopressinNigerian Medical Journal | Vol. 53 | Issue 3 | July-September | 201
    corecore