2,245 research outputs found

    Orthogonality criterion for banishing hydrino states from standard quantum mechanics

    Get PDF
    Orthogonality criterion is used to shown in a very simple and general way that anomalous bound-state solutions for the Coulomb potential (hydrino states) do not exist as bona fide solutions of the Schr\"{o}dinger, Klein-Gordon and Dirac equations.Comment: 6 page

    Quasi-exactly-solvable confining solutions for spin-1 and spin-0 bosons in (1+1)-dimensions with a scalar linear potential

    Full text link
    We point out a misleading treatment in the recent literature regarding confining solutions for a scalar potential in the context of the Duffin-Kemmer-Petiau theory. We further present the proper bound-state solutions in terms of the generalized Laguerre polynomials and show that the eigenvalues and eigenfunctions depend on the solutions of algebraic equations involving the potential parameter and the quantum number.Comment: 8 pages, 1 figur

    Effects of a mixed vector-scalar kink-like potential for spinless particles in two-dimensional spacetime

    Full text link
    The intrinsically relativistic problem of spinless particles subject to a general mixing of vector and scalar kink-like potentials (∼tanh,γx\sim \mathrm{tanh} ,\gamma x) is investigated. The problem is mapped into the exactly solvable Surm-Liouville problem with the Rosen-Morse potential and exact bounded solutions for particles and antiparticles are found. The behaviour of the spectrum is discussed in some detail. An apparent paradox concerning the uncertainty principle is solved by recurring to the concept of effective Compton wavelength.Comment: 13 pages, 4 figure

    A Laplace transform approach to the quantum harmonic oscillator

    Full text link
    The one-dimensional quantum harmonic oscillator problem is examined via the Laplace transform method. The stationary states are determined by requiring definite parity and good behaviour of the eigenfunction at the origin and at infinity

    Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction

    Full text link
    The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a {\it sine qua non} condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings.Comment: 8 pages, 1 table. arXiv admin note: text overlap with arXiv:1403.603

    Orthogonality criterion for banishing hydrino states from standard quantum mechanics

    Get PDF
    Orthogonality criterion is used to show in a very simple and general way that anomalous bound-state solutions for the Coulomb potential (hydrino states) do not exist as bona fide solutions of the Schrödinger, Klein-Gordon and Dirac equations.http://www.sciencedirect.com/science/article/B6TVM-4NNYJ65-7/1/042cc91461a3d63c306721d501970a5
    • …
    corecore