56 research outputs found
Obesity: considerations about etiology, metabolism, and the use of experimental models
Studies have been conducted in order to identify the main factors that contribute to the development of obesity. The role of genetics has also been extensively studied. However, the substantial augmentation of obesity prevalence in the last 20 years cannot be justified only by genetic alterations that, theoretically, would have occurred in such a short time. Thus, the difference in obesity prevalence in various population groups is also related to environmental factors, especially diet and the reduction of physical activity. These aspects, interacting or not with genetic factors, could explain the excess of body fat in large proportions worldwide. This article will focus on positive energy balance, high-fat diet, alteration in appetite control hormones, insulin resistance, amino acids metabolism, and the limitation of the experimental models to address this complex issue
Leucine supplementation combined with resistance exercise improves the plasma lipid profile of dexamethasone-treated rats
The impact of leucine supplementation and resistance exercise (RE) on plasma lipid profile was evaluated in adult rats treated with dexamethasone, an experimental model of dyslipidemia. Total cholesterol did not differ among groups. Furthermore, leucine supplementation did not promote improvement in the plasma total cholesterol and LDL-c of the animals. However, plasma TG and VLDL-c were significantly decreased and HDL-c increased after 7 days of leucine supplementation combined with RE. In conclusion, leucine supplementation combined with RE, but not isolated, improved the plasma lipid profile of dexamethasone-induced dyslipidemic rats
The Effects of a “Health at Every Size®”-Based Approach in Obese Women: A Pilot-Trial of the “Health and Wellness in Obesity” Study
This study explored the effects of Health at Every Size®-based intervention on obese women by qualitatively evaluating participants’ perception towards the program and quantitatively evaluating changes related to psychological, behavioral and body composition assessments. A prospective one-year quasi-experimental mixed-method trial was conducted. The mixed method design was characterized by a spiral method, and quantitative and qualitative findings were combined during the interpretation phase. The qualitative data involved three focus groups; and quantitative data comprised physiological, psychological and behavioral assessments. Initially, 30 participants were recruited; 14 concluded the intervention. From the focus groups, the following interpretative axes were constructed: the intervention as a period of discoveries; shifting parameters: psychological, physical and behavioral changes; eating changes, and; redefining success. Body weight, body mass index, total body fat mass and body fat percentage were significantly decreased after the intervention (-3.6, -3.2, -13.0, and -11.1%, respectively; p≤0.05, within-time effect). Participants reported being more physically active, and perceiving better their bodies. Eating-wise, participants reported that the hunger and satiety cues and the consumption of more frequent meals facilitated their eating changes. Finally, participants reported that they could identify feelings with eating choices and refrain from the restrained behavior. These qualitative improvements were accompanied by modest but significant improvements in quantitative assessments. Clinicaltrials.gov registration: NCT02102061
No effect of creatine supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats
Background: Exacerbated oxidative stress is thought to be a mediator of arterial hypertension. It has been postulated that creatine (Cr) could act as an antioxidant agent preventing increased oxidative stress. The aim of this study was to investigate the effects of nine weeks of Cr or placebo supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats (SHR). Findings: Lipid hydroperoxidation, one important oxidative stress marker, remained unchanged in the coronary artery (Cr: 12.6 +/- 1.5 vs. Pl: 12.2 +/- 1.7 nmol.mg(-1); p = 0.87), heart (Cr: 11.5 +/- 1.8 vs. Pl: 14.6 +/- 1.1 nmol.mg(-1); p = 0.15), plasma (Cr: 67.7 +/- 9.1 vs. Pl: 56.0 +/- 3.2 nmol.mg(-1); p = 0.19), plantaris (Cr: 10.0 +/- 0.8 vs. Pl: 9.0 +/- 0.8 nmol.mg(-1); p = 0.40), and EDL muscle (Cr: 14.9 +/- 1.4 vs. Pl: 17.2 +/- 1.5 nmol.mg(-1); p = 0.30). Additionally, Cr supplementation affected neither arterial blood pressure nor heart structure in SHR (p > 0.05). Conclusions: Using a well-known experimental model of systemic arterial hypertension, this study did not confirm the possible therapeutic effects of Cr supplementation on oxidative stress and cardiovascular dysfunction associated with arterial hypertension.FAPES
Carbohydrate mouth rinse: does it improve endurance exercise performance?
It is well known that carbohydrate (CHO) supplementation can improve performance in endurance exercises through several mechanisms such as maintenance of glycemia and sparing endogenous glycogen as well as the possibility of a central nervous-system action. Some studies have emerged in recent years in order to test the hypothesis of ergogenic action via central nervous system. Recent studies have demonstrated that CHO mouth rinse can lead to improved performance of cyclists, and this may be associated with the activation of brain areas linked to motivation and reward. These findings have already been replicated in other endurance modalities, such as running. This alternative seems to be an attractive nutritional tool to improve endurance exercise performance
Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans
Branched-chain amino acids (BCAA) supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE)-derived biochemical markers of muscle soreness (creatine kinase (CK), aldolase, myoglobin), soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality
Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies
The purpose of present review is to describe the effect of leucine supplementation on skeletal muscle proteolysis suppression in both in vivo and in vitro studies. Most studies, using in vitro methodology, incubated skeletal muscles with leucine with different doses and the results suggests that there is a dose-dependent effect. The same responses can be observed in in vivo studies. Importantly, the leucine effects on skeletal muscle protein synthesis are not always connected to the inhibition of skeletal muscle proteolysis. As a matter of fact, high doses of leucine incubation can promote suppression of muscle proteolysis without additional effects on protein synthesis, and low leucine doses improve skeletal muscle protein ynthesis but have no effect on skeletal muscle proteolysis. These research findings may have an important clinical relevancy, because muscle loss in atrophic states would be reversed by specific leucine supplementation doses. Additionally, it has been clearly demonstrated that leucine administration suppresses skeletal muscle proteolysis in various catabolic states. Thus, if protein metabolism changes during different atrophic conditions, it is not surprising that the leucine dose-effect relationship must also change, according to atrophy or pathological state and catabolism magnitude. In conclusion, leucine has a potential role on attenuate skeletal muscle proteolysis. Future studies will help to sharpen the leucine efficacy on skeletal muscle protein degradation during several atrophic states
- …