83,656 research outputs found

    Statistical physics of flux-carrying Brownian particles

    Full text link
    Chern-Simons gauge field theory has provided a natural framework to gain deep insight about many novel phenomena in two-dimensional condensed matter. We investigate the nonequilibrium thermodynamics properties of a (two-dimensional) dissipative harmonic particle when the Abelian topological gauge action and the (linear) Brownian motion dynamics are treated on an equal footing. We find out that the particle exhibits remarkable magneticlike features in the quantum domain that are beyond the celebrated Landau diamagnetism: this could be viewed as the non-relativistic Brownian counterpart of the composite excitation of a charge and magneticlike flux. Interestingly, it is shown that the properties of such flux-carrying Brownian particle are in good agreement with the classical statistical mechanics at sufficient high temperatures, as well as are widely consistent with the Third Law of thermodynamics in the studied dissipative scenarios. Our findings also suggest that its ground state may be far from trivial, i.e. it fakes a seemingly degenerate state.Comment: 18+6 pages. 8 figures. Comments are welcome. Improved introduction and conclusion. Minor changes in the abstract and main par

    Quantum dissipation of planar harmonic systems: Maxwell-Chern-Simons theory

    Full text link
    The conventional Brownian motion in harmonic systems has provided a deep understanding of a great diversity of dissipative phenomena. We address a rather fundamental microscopic description for the (linear) dissipative dynamics of two-dimensional harmonic oscillators that contains the conventional Brownian motion as a particular instance. This description is derived from first principles in the framework of the so-called Maxwell-Chern-Simons electrodynamics, or also known, Abelian topological massive gauge theory. Disregarding backreaction effects and endowing the system Hamiltonian with a suitable renormalized potential interaction, the conceived description is equivalent to a minimal-coupling theory with a gauge field giving rise to a fluctuating force that mimics the Lorentz force induced by a particle-attached magnetic flux. We show that the underlying symmetry structure of the theory (i.e. time-reverse asymmetry and parity violation) yields an interacting vortex-like Brownian dynamics for the system particles. An explicit comparison to the conventional Brownian motion in the quantum Markovian limit reveals that the proposed description represents a second-order correction to the well-known damped harmonic oscillator, which manifests that there may be dissipative phenomena intrinsic to the dimensionality of the interesting system.Comment: 20+11 pages, 3 figures. Comments are welcome. Discussion in Sec. III and IV improved. Several typos and a misleading remark corrected, and figure replaced. Close to the published versio

    Legal Marketing of Environmental Law

    Get PDF

    Effects of particle production during inflation

    Full text link
    The impact of particle production during inflation on the primordial curvature perturbation spectrum is investigated both analytically and numerically. We obtain an oscillatory behavior on small scales, while on large scales the spectrum is unaffected. The amplitude of the oscillations is proportional to the number of coupled fields, their mass, and the square of the coupling constant. The oscillations are due a discontinuity in the second time derivative of the inflaton, arising from a temporary violation of the slow-roll conditions. A similar effect on the power spectrum should be produced also in other inflationary models where the slow-roll conditions are temporarily violated.Comment: 7 pages, 5 figure

    Social media censorship in times of political unrest: a social simulation experiment with the UK riots

    Get PDF
    Following the 2011 wave of political unrest, extending from the Arab Spring to the UK riots, the formation of a large consensus around Internet censorship is underway. The present paper adopts a social simulation approach to show that the decision to “regulate”, filter or censor social media in situations of unrest changes the pattern of civil protest and ultimately results in higher levels of violence. Building on Epstein's (2002) agent-based model, several alternative scenarios are generated. The systemic optimum, represented by complete absence of censorship, not only corresponds to lower levels of violence over time, but allows for significant periods of social peace after each outburst

    Kovacs-like memory effect in athermal systems: linear response analysis

    Get PDF
    We analyse the emergence of Kovacs-like memory effects in athermal systems within the linear response regime. This is done by starting from both the master equation for the probability distribution and the equations for the physically relevant moments. The general results are applied to a general class of models with conserved momentum and non-conserved energy. Our theoretical predictions, obtained within the first Sonine approximation, show an excellent agreement with the numerical results.Comment: 18 pages, 6 figures; submitted to the special issue of the journal Entropy on "Thermodynamics and Statistical Mechanics of Small Systems
    corecore