6 research outputs found

    14 MeV neutrons for 99Mo/99mTc production: Experiments, simulations and perspectives

    Get PDF
    Background: the gamma-emitting radionuclide Technetium-99m (99mTc) is still the workhorse of Single Photon Emission Computed Tomography (SPECT) as it is used worldwide for the diagnosis of a variety of phatological conditions.99mTc is obtained from99Mo/99mTc generators as pertechnetate ion, which is the ubiquitous starting material for the preparation of99mTc radiopharmaceuticals.99Mo in such generators is currently produced in nuclear fission reactors as a by-product of235U fission. Here we investigated an alternative route for the production of99Mo by irradiating a natural metallic molybdenum powder using a 14-MeV accelerator-driven neutron source. Methods: after irradiation, an efficient isolation and purification of the final99mTc-pertechnetate was carried out by means of solvent extraction. Monte Carlo simulations allowed reliable predictions of99Mo production rates for a newly designed 14-MeV neutron source (New Sorgentina Fusion Source). Results: in traceable metrological conditions, a level of radionuclidic purity consistent with accepted pharmaceutical quality standards, was achieved. Conclusions: we showed that this source, featuring a nominal neutron emission rate of about 1015s−1, may potentially supply an appreciable fraction of the current99Mo global demand. This study highlights that a robust and viable solution, alternative to nuclear fission reactors, can be accomplished to secure the long-term supply of99Mo

    Acute cardiac injury after subarachnoid haemorrhage: two case reports

    Get PDF
    It is well known that cardiopulmonary complications are often associated to subarachnoid haemorrhage. For appropriate therapeutic managing it is very important to distinguish acute coronary syndrome from neurogenic myocardial injury, which is a reversible condition. Furthermore, because the hearts of brain dead patients may be utilized for therapeutic purpose, it has became of importance to rule out erroneous diagnosis of cardiac ischemia in order to avoid rejection of hearts potential suitable for transplantation

    A Project for High Fluence 14 MeV Neutron Source

    No full text
    The international community agrees on the importance to build a large facility devoted to test and validate materials to be used in harsh neutron environments. Such a facility, proposed by ENEA , reconsiders a previous study known as “Sorgentina” but takes into account new technological development so far attained. The “New Sorgentina” Fusion Source (NSFS) project is based upon an intense D - T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating target s . NSFS produces about 1 x10 13 n cm - 2 s - 1 over about 50 cm 3 . The NSFS facility will use the ion source and accelerating system technology developed for the Positive Ion Injectors (PII) used to heat the plasma in the fusion experiments,. NSFS, to be intended as an European facility, may be realized in a few years, once provided a preliminary technological program devote to study the operation of the ion source in continuous mode, target h eat loading/ removal, target and tritium handling, inventory as well as site licensing . In this contribution, the main characteristics of NSFS project will be presented

    Road to virtual tuning: New physical lump model and test protocol to support damper tuning in hyundai motor Europe technical center

    No full text
    Vehicle dynamics is a fundamental part of vehicle performance. It combines functional requirements (i.e. road safety) with emotional content (“fun to drive”, “comfort”): this balance is what characterizes the car manufacturer (OEM) driving DNA. To reach the customer requirements on Ride & Handling, integration of CAE and testing is mandatory. Beside of cutting costs and time, simulation helps to break down vehicle requirements to component level. On chassis, the damper is the most important component, contributing to define the character of the vehicle, and it is defined late, during tuning, mainly by experienced drivers. Usually 1D lookup tables Force vs. Velocity, generated from tests like the standard VDA, are not able to describe the full behavior of the damper: different dampers display the same Force vs. Velocity curve but they can give different feeling to the driver. Consequently, the capability to represent the full damper behavior, in testing and numerical simulation, is fundamental. To do that, a new CAE damper model and an advanced testing protocol have been developed in collaboration between Hyundai Motor Group and Politecnico di Torino. The model has been developed in Matlab/Simulink® to be integrated with the CAE process used in HMETC (e.g. Driving Simulator). It represents the damper behavior by the physics of its components (such as rod, valves components, etc.). Most of the parameters are sourced from damper BIM or by measuring them. The model has been verified against the output of the testing protocol, showing a good level of correlation up to 30 Hz. The test protocol has been developed to provide more detailed informations about the damper force evolution under quasi-static and dynamic conditions. A new way to analyze results in frequency domain has been proposed, to better understand, describe and correlate the damper performance to whole vehicle behavior
    corecore