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Abstract: Background: the gamma-emitting radionuclide Technetium-99m (99mTc) is still the workhorse
of Single Photon Emission Computed Tomography (SPECT) as it is used worldwide for the diagnosis of
a variety of phatological conditions. 99mTc is obtained from 99Mo/99mTc generators as pertechnetate ion,
which is the ubiquitous starting material for the preparation of 99mTc radiopharmaceuticals. 99Mo in
such generators is currently produced in nuclear fission reactors as a by-product of 235U fission. Here
we investigated an alternative route for the production of 99Mo by irradiating a natural metallic
molybdenum powder using a 14-MeV accelerator-driven neutron source. Methods: after irradiation,
an efficient isolation and purification of the final 99mTc-pertechnetate was carried out by means of
solvent extraction. Monte Carlo simulations allowed reliable predictions of 99Mo production rates
for a newly designed 14-MeV neutron source (New Sorgentina Fusion Source). Results: in traceable
metrological conditions, a level of radionuclidic purity consistent with accepted pharmaceutical quality
standards, was achieved. Conclusions: we showed that this source, featuring a nominal neutron
emission rate of about 1015 s−1, may potentially supply an appreciable fraction of the current 99Mo
global demand. This study highlights that a robust and viable solution, alternative to nuclear fission
reactors, can be accomplished to secure the long-term supply of 99Mo.

Keywords: Technetium-99m; Molibdenum-99; neutron generator

1. Introduction

Metastable Technetium-99 (99mTc) is a well-suited radionuclide for medical imaging thanks to
its short half-life [1] T1/2 = 6.0067(10)h [2] and the 140 keV γ-ray emission. Radiopharmaceuticals
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based on 99mTc are used worldwide in Single Photon Emission Computed Tomography, with more
than 30 million procedures per year, accounting for about 85% of all nuclear medicine diagnostics [3].
Nuclear medicine departments in hospitals usually use 99mTc as extracted from 99Mo/99mTc generators,
where 99Mo, whose half-life is T1/2 = 2.77479(6)d [4], acts as 99mTc precursor, as shown in Figure 1.
This makes possible the delivery of the generators at long distances from the production sites.
At present, 99Mo is almost exclusively obtained from the fission of 235U-containing targets, irradiated
in a small number of research nuclear fission reactors in the world [5]. A realistic estimation of the
weekly 99Mo activity demand at world level, expressed in terms of 6-days Curie (6-day Ci), is about
444 TBq. The 6-days Ci is the 99Mo activity available 6 days after the so-called end of target processing
(EOP) [3].
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Figure 1. (color online) Decay scheme of 99Mo: The black arrow indicates the transition of 99Mo directly
to the 99Tc ground state; blue arrows indicate the transition from 99Mo to 99mTc and from 99Tc ground
state to 99Ru. The yellow arrow indicates the transition from 99mTc to 99Tc.

A global shortage of 99Mo emerged in the late 2000s because of the frequent shut down due to
extended maintenance periods of the main reactors for 99Mo production, namely the Chalk River
National Research Universal (NRU) nuclear fission reactor in Canada and the High Flux Reactor (HFR)
in the Netherlands. These are capable of meeting about two-thirds of 99Mo world demand [6]. These
events highlighted vulnerabilities in the standard production/supply chain of medical radionuclides
that relies on nuclear fission reactors.

The scientific community then became aware of a forthcoming world level problem in 99Mo/99mTc
production methods and supply, as it is well described and outlined in different papers [6,7].
International organizations such as the International Atomic Energy Agency (IAEA) and the
Organization for Economic Co-operation and Development (OECD) have been working to identify
specific action guidelines for the production of 99Mo.

Three general methods of 99mTc production (direct or by means of 99Mo precursor) have been
identified as short-, mid- and long-term alternative solutions to the reactor-based 235U fission
technique [5]:

• Thermal or fast (14 MeV) neutron beams: 98Mo(n,γ)99Mo and 100Mo(n,2n)99Mo, respectively.
• Gamma-ray beam: 100Mo(γ,n)99Mo.
• Accelerated charged-particle beams: 96Zr(α,n)99Mo or 100Mo(p,2n)99mTc.

Here, we thoroughly investigate the 100Mo(n,2n)99Mo reaction induced by 14 MeV neutrons, having
been identified [8,9] as a possible alternative method to 235U fission. Indeed, the 100Mo(n,2n)99Mo cross
section is marked and exhibits a maximum of about 1.5 barn around 14 MeV.
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As indicated in official documents [10], the method based on 100Mo(n,2n)99Mo can be a valuable
and promising route to 99Mo production as it also minimizes issues related to nuclear waste, that
represent one of the main concerns for nuclear fission reactors. On the other hand, the effective
99Mo quantity achievable with a 14 MeV neutron source must be clearly and quantitatively
assessed, to demonstrate to what extent this alternative way may be a viable solution for a global
level production.

In this respect, we perform experiments irradiating a metallic natural molybdenum powder
with 14 MeV neutrons generated in deuteron-tritium (D-T) fusion reactions at the Frascati Neutron
Generator (FNG), operating at the ENEA Frascati Research Centre [11,12]. In preparation of the
experiment, we perform Monte Carlo (MC) simulations of the irradiation tests using the Fluka code [13].
The simulated experiment is benchmarked by experimental data, allowing the provision of quantitative
predictions of the 99Mo production by means of the New Sorgentina Fusion Source (NSFS) [14–16],
a very intense 14 MeV D-T neutron source under investigation at ENEA, and currently in an advanced
conceptual design stage.

2. Methods

2.1. 100Mo(n,2n)99Mo Reaction with 14 MeV Neutrons

The nuclear reaction involved in the production of 99Mo with 14 MeV neutrons is a process that
can be described as n + 100

42 Mo → 99
42Mo + 2n .

The cross section of this process has a broad maximum around 14 MeV and a threshold at about
8 MeV (Figure 2) [17].
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Figure 2. Cross section of the inelastic nuclear reaction 100Mo(n,2n)99Mo.

2.1.1. The Frascati Neutron Generator

The neutron emission rate at FNG is known in an absolute way by using the so-called associated
alpha particle technique [18]. The fusion reaction in D-T mode produces an alpha particle of 3.5 MeV
energy for each 14.1 MeV neutron produced. The number of alpha particles produced during the
fusion reactions is measured by means of a silicon detector inside the beam drift tube, and subtending
the FNG beam target under a small and accurately defined solid angle. The absolute number of
alpha particles measured directly provides the absolute number of neutrons produced by the target.
The exact alpha-neutron correlation at the angle subtended by the Silicon Drift Detector (SSD) is
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accounted for using the well know formula [18] Ya = Yn = 4πCRa
∆Ωa

, Ra being an anisotropic correction
factor that can be easily calculated, C the experimental alpha particles count rate and ∆Ωa the solid
angle subtended by the alpha particle detector. Experimental measurements of the neutron flux and
energy spectrum, supported by MC simulations carried out with MCNP [19], are within 3% uncertainty.
The neutron spectrum obtained at FNG is also well known. This has an angular dependence because
the momentum of the incident deuterons impinging onto the target makes the energy of the neutrons
varying with the emission angle (Figure 3) [20].
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2.1.2. Molybdenum Sample Preparation

The sample used for the 14 MeV neutron irradiation is a metallic powder from Metallwehr Planiee
contained into a commercial plexiglass container (Figure 4). To measure the density of the sample
when inserted and pressed into the plexiglass holder the following procedure was applied:

1- Three identical plexiglass containers are singularly weighted on a high precision scale (Model
RADWAG XA 60/220/X);

2- We put distilled water at a controlled temperature of T = 296 K into the three containers, so to
have a well-known value the water density [21];

3- We weighted each container with the water inside;
4- By measuring the water mass inside the container and knowing the water density at that the

given temperature, we calculate the inner volume of the container as the average of the three
measured values;
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5- We put the powder inside one of the three containers, pressing it during filling by means of
a small metallic piston;

6- We measure the weight of container and powder and subtracting the average weight of the void
container, thus obtaining a molybdenum mass to be irradiated on FNG of 6.5 g;

7- Knowing the powder mass and its volume it is possible to determine the powder density that
results to be d = (1.840 ± 0.001) g cm−3.
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Figure 4. Picture of the natural Molybdenum powder contained into the plexiglass vial used during
14 MeV neutron irradiation at FNG.

2.1.3. Molybdenum Powder Irradiation

The sample (i.e., the container with the molybdenum powder) was placed in position close to
FNG target (Figure 5). The average flux inside the sample volume was determined by placing onto
the plexiglass container an Al activation foil 25 µm thickness and mass of 0.0338 g. Upon irradiation
of 14 MeV neutrons, Al undergoes the inelastic reaction 27Al(n,α)24Na and activates. The activity
induced in the foil (Figure 6). Upon neutron irradiation was measured by means of the calibrated
HPGe available at the FNG laboratory (Table 1).

Table 1. Efficiency values of the HPGe used at the FNG laboratory. These values allow to determine
from the measurement of the activity of the Al foil the neutron flux at the foil position that is the
neutron flux used to irradiate the Molybdenum powder. The uncertainty on the efficiencies is 3%.

Energy (keV) Efficiency

59.54 6.3948 × 10−3

80.99 1.1430 × 10−2

121.78 1.2462 × 10−2

244.67 9.4432 × 10−3

276.40 9.2965 × 10−3

302.85 8.7134 × 10−3

344.30 7.6811 × 10−3

356.01 7.8276 × 10−3

383.84 7.4923 × 10−3

411.80 6.9161 × 10−3

661.60 5.0448 × 10−3

778.90 4.3317 × 10−3

867.39 4.0252 × 10−3

964.00 3.8244 × 10−3

1085.80 3.5155 × 10−3

1112.07 3.5334 × 10−3

1173.25 3.3827 × 10−3

1332.50 3.0695 × 10−3

1408.08 2.9852 × 10−3
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Figure 6. Spectrum from activated Aluminum foil upon 15 min irradiation by 14 MeV neutrons from
FNG, recorded with the HPGe available in the FNG laboratory. In the spectrum, the main gamma/ray
lines are due to: 27Al(n,<)24Na reaction channel (E = 1368 keV), From the gamma activity of the
1368 keV line 14 MeV neutron flux and source yield are determined. The peaks originating from the
27Al(n,p)27Mg inelastic reactions are found at E = 170,843 and 1014 keV. Also visible in the spectrum is
the annihilation peak at E = 511 keV.
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This allows a direct measurement of the neutron flux thanks to the relation: A0 =

NT
∫ Emax

Emin σ(E)·Φ(E)·dE·[1 − exp(−λtirr)] where NT is the number of Al target nuclei in the foil, σ(E)
the activation cross section, Φ(E) the neutron spectral fluence rate, λ the daughter nucleus half-life and
tirr the irradiation time.

2.1.4. Gamma-Ray Spectrometry

To quantify at high-metrological level the 99Mo produced upon 14 MeV neutron irradiation,
the high-energy resolution HPGe detector operating at ENEA-INMRI was used. The detector is coaxial
p-type, featuring an efficiency Σ = 0.0045 at 661.6 keV for a point-like source placed at 10 cm from the
crystal. The robustness, accuracy and precision of the measurements performed at ENEA-INMRI are
guaranteed by their traceability to the primary activity standards [22] developed and maintained in
the Institute. The irradiated sample was placed at the reference distance of 10 cm from the detector and
the spectrum is recorded for a (live) time of 90,066 s. To estimate the corrections to the efficiency for
a volumetric source taking into account the geometry of the sample and its density, an efficiency transfer
computation is applied. This was performed by using MC simulation based on GESPECOR4.2 [23]
code dedicated to the gamma-ray spectrometry also correcting for coincidence summing. The complete
analysis on the recorded spectra is carried out following the procedure described in Ref. [24] to estimate
the correct net count rate under the photoelectric peaks associated with the 99Mo. All the corrections for
background, decay during the measurement time, and decay since the reference date are applied [25].

2.1.5. MC Simulations of the Irradiation of Molybdenum Powder at FNG

The simulation of the 99Mo activity produced after 14 MeV neutron irradiation of natural
molybdenum powder is carried out using the Fluka general purpose MC code [13]. The neutron
energy fluence spectrum and the geometry of the FNG neutron emitting source are implemented
in the Fluka simulation by a proper user routine, written in Fortran, which is compiled and linked
to the executable. The nuclear data for molybdenum used by Fluka are the EFF–2.4 (The European
Fusion File) [13].The geometry and the materials of the irradiated sample are fully implemented
into the model (Figure 7): a Plexiglascylindrical container filled with natural molybdenum powder,
made of a mixture of isotopes according the natural composition (Table 2), but with assigned density
corresponding to the measured one (1.940 ± 0.001) g cm−3. The FNG bunker is not considered in the
simulation since irrelevant to the assessment of the result: in fact, the scattered neutron fluence rate at
the irradiation point is estimated to be almost four orders of magnitude lower than that at 14 MeV.
The radionuclides produced and their activity are calculated with the RESNUCLEI card that, together
with the “IRRPROFI” and the “RADDECAY” cards, allows to activate the generation and transport
of the decay products, according a given primary particle emission rate and a specific irradiation
time. The “IRRPROFI” card also enables response to complex duty cycles, i.e., a sequence of multiple
beam-on and beam-off periods also with different intensity. The actual irradiation beam profile of the
experimental test carried at FNG is reproduced: an irradiation time of 900 s with a constant neutron
emission rate of 2.89 × 1010 s−1. The average neutron fluence rate inside the sample is evaluated to be
1.1× 109 cm−2 s−1, while the neutron current across the sample surface is estimated 3.8× 108 cm−2 s−1,
in agreement within a factor 1.3 with the experimental value provided by the activation measurement
of the Aluminum foil, on the external surface of the Mo sample container (also introduced in the
simulated setup). By means of Fluka, it is possible to directly calculate the integral activity or the
activity per unit volume of each radionuclide produced during the irradiation time as well as at
different times after the irradiation (the so-called “cooling times” by using the “DCYSCORE” card) and
to follow and transport the decay products. Fluka estimates that the 99Mo specific activity produced
at FNG at the end of the irradiation is 2.50 kBq g−1 with 1% statistical error. The overall combined
statistical uncertainty is 11% of the predicted value resulting from the uncertainties of: (1) the nuclear
data for the cross section at 14 MeV used in Fluka; (2) the FNG neutron emission rate; (3) the sample
positioning with respect to the neutron source and (4) MC simulation statistics. Thus, the 2.32 kBq g−1,
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experimentally measured by means of gamma-ray spectrometry, well compares to the calculated one
(2.50 kBq g−1) within the error. The good agreement between the Fluka results and the experimental
measurements of the FNG test for all the produced radionuclides whose activities is measured at the
INMRI (Table 3), benchmarks our model showing the ability of describing in a realistic way both the
14 MeV neutron fusion source and the molybdenum powder, relying on the physical models and
nuclear data implemented in the Fluka code. This makes us confident in being able to perform reliable
predictions of the 99Mo produced by 14 MeV neutron source on enriched 100Mo powder target.

Table 2. Isotopic composition of the natural molybdenum powder.

Radionuclide Abund (%)
92Mo 14.8
94Mo 9.3
95Mo 15.9
96Mo 16.7
97Mo 9.6
98Mo 24.1

100Mo 9.6

Table 3. MC predicted and measured specific activity for other relevant radionuclides than 99Mo
generated after 14 MeV neutron irradiation of the natural Molybdenum powder.

Z Radionuclide SAMC (*) (Bq g−1) SAExp (Bq g−1)

40

89Zr 46.35 ± 1.6% 48 ± 4.9%
95Zr 0.96 ± 5.5% 0.97 ± 6.4%
97Zr 16.1 ± 9.1% 16.6 ± 5.8%

41
93Nbm 39.1 ± 1.8% 40 ± 4.5%
95Nb 189.7 ± 2.5% 187 ± 1.8%

(*) Calculated values with simulation statistical uncertainties.
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the Fluka simulations.

2.2. Extraction of the Pertechnetate and Quality Controls

The automatable module developed and properly optimized for this project (Figure 8) involves
five main steps: (1) dissolution of the irradiated target and basification of the solution; (2) solvent
extraction of pertechnetate with MEK from the aqueous alkaline solution; (3) separation of the
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MEK phase, containing pertechnetate, from aqueous solution containing molybdate and by-products;
(4) purification of the extracted pertechnetate by column chromatography with a silica and an alumina
cartridges and finally; (5) elution of sodium pertechnetate [99mTc]NaTcO4 from the alumina column
with saline [26–28]. The dissolution, extraction and purification processes were performed the day
after sample irradiation to achieve the equilibrium between 99mTc and the parent nuclide 99Mo.
The procedure was carried out in a shielded radiochemistry hood by means of the automatable module.
The procedure takes about 45 min, comprehensive of the dissolution step, and allows to obtain 99mTc
in high yield with minimum activity losses. This technique was also recently applied for the high
yield separation of 99mTc directly produced by proton irradiation with cyclotron on an enriched 100Mo
sample [26,27]. A detailed quality control analysis of the final pertechnetate solution was performed,
to determine isotopes and impurity amounts, Mo breakthrough, percentage of organic solvent etc.
The quality of the product is evaluated as radiochemical purity by radio TLC, radionuclidic purity
by gamma-ray spectrometry with HPGe detector and chemical purity by colorimetric strip tests,
gas-chromatography and inductively coupled plasma mass spectrometry (ICP-MS). The chemical and
radiochemical purity values are also assessed (Tables 3 and 4).

Table 4. Radiochemical (RCP) and chemical (CP) purity values of the [99mTc]TcO4
− solution obtained

at the end of the separation and purification procedure.

Quality Controls
RCP CP

[99mTc]TcO4
− pH Mo Al MEK

Experimental >99% 5 <5 ppm <5 ppm <0.0005% (v/v)
EU Pharmacopoeia ≥95% 4–8 <5 ppm <0.5% (v/v)

Chemical analysis of a saline solution aliquot, containing 99mTc from extraction and separation
procedure, is performed by means of an ICP-MS equipped with Octapole Reaction System (ORS)
fueled with He collision cell and H2 cell gas, to reduce spectrometric interferences both polyatomic
and isobaric. ICP-MS analyses is carried out using an Agilent ICP-MS (Inductively Coupled Plasma
Mass Spectrometry), Agilent 7700× equipped with: a collision/reaction Cell ORS3 (Octapole Reaction
System, 3rd generation cell design, Agilent, Santa Clara, CA, USA), a concentric quartz MicroMist
Nebulizer as a sample introduction system. ICP-MS is optimized with a multiple standard tuning
solution 10 µg/L produced by Agilent Technologies Spa (Table 5). The aliquot described previously
is evaporated to dryness. The residual dissolved in 1 mL of nitric acid conc. and then added with
ultrapure water (18 MΩ) to 10 mL total. This solution is analyzed directly with ICP-MS first by
a scanning method (SCAN) on all the masses (from M/Z = 3 to 254, M ad Z being the atomic mass
and number, respectively) and then on each mass corresponding to the significant values obtained
from the previous scan. The quantitative analysis is made after subtraction of the Blank (background +
water + acid) and comparing the Counts with Reference Standard Solutions of known concentration
(Table 4). The concentrations are extremely low, and they can be referred as impurities contained in the
solvents used (MEK, Water, Nitric Acid) and/or laboratory materials used during the extraction and
preparation (vials, plastics, tubings, . . . ).
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Table 5. Impurities concentrations in the pertechnetate solution after extraction and purification.
Concentration is given in in ppb (part of billion).

Element M (amu) C (µg/L)

Be 9 2.84
In 115 0.18
Sm 147 0.08
Tb 159 0.05
Er 166 0.07
Yb 172 0.03
Re 185 3.72
Pb 208 0.29
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Figure 8. Picture of the automatable solvent extraction module. (a), In this vial occurs the dissolution
with H2O2 in H2O of irradiated natural molybdenum powder and the basification with NaOH.
(b), Vial for solvent extraction of pertechnetate with MEK from the aqueous alkaline solution.
(c,d), Silica and alumina cartridges respectively, used for the purification of the extracted pertechnetate.
(e), Vial (placed inside a shielded lead container) used for the elution of sodium pertechnetate
[99mTc]NaTcO4 from the alumina column with saline. (f), Vial used for waste.

2.3. Predictions of the 99Mo Activity Producible at the NSFS and Thermo-Physical Analysis of the
100Mo Targets

Several MC simulations have been performed, to predict the 99Mo total activity obtainable
with targets of different geometry, made of pure 100Mo, for several irradiation profiles (i.e., neutron
rates and time windows of irradiation), at different cooling times after the neutron beam shutdown.
The activities of all the other radionuclides produced have been also estimated at the end of the
irradiation. To provide “reliable” and “conservative” estimations of the 99Mo production capabilities
at NSFS, the most important physical operative constraints that could actually limit the operation of
NSFS are identified. The irradiation modalities are, in fact, mainly related to the thermo-mechanical
issues that a 100Mo target can experience when the maximum NSFS neutron emission rate is used for
a long irradiation time (without using any active cooling system), attempting to maximize the 99Mo
activity that could be produced. The available irradiation room considered is in between the two NSFS
rotating targets also referred to as the NSFS wheels (Figure 9).
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Figure 9. Schematic view of the double target NSFS. Two deuteron beams are directed onto
a tritium-loaded target where fusion reactions take place. The tritium beams continuously implant
tritium onto the target to maintain reaction rate.

An operative neutron emission rate of 4 × 1015 s−1 and an optimized irradiation time of 22 h
are assumed in our simulations, the latter being identified on the base of the decay time curve of the
transient equilibrium between 99Mo, precursor, and 99mTc, daughter (Figure 10).
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Figure 10. Plot of the transient equilibrium between 99Mo and 99mTc. From the trend it is clear that the
optimal irradiation time is of about 22 h.

The energy deposited in the target, which causes the heating of the target itself, is mainly due
(more than 80%) to the electromagnetic radiation ensuing the inelastic interaction of neutrons with the
target nuclei (Figure 11). The temperature distribution inside the target is evaluated taking into account
the power density deposition as derived from the Fluka results and the heat exchange by irradiation.
The material of the coating for the two NSFS wheels is assumed to be Titanium at the uniform
temperature of 693 K and both polished and oxidized cases for the surface status are considered.
A uniform temperature equal to the maximum value expected on the NSFS wheels at the nominal
power (693 K) is also a conservative assumption since it does apply the highest temperature to all the
surfaces interfaced with the 100Mo target, disregarding the thermal gradient that could make the heat
exchange more efficient, further lowering the maximum temperature. The ANSYS thermal calculations
enable the accomplishment of a transient analysis of the temperature field inside the NSFS irradiation
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chamber during all the irradiation time, so to get results as accurate as possible, all the thermo-physical
properties of the 100Mo (heat capacity, thermal conductivity, emissivity) have been introduced as
a function of the temperature. In all the estimations the transversal area of the 100Mo targets (either
the bulk or segmented ones) is assumed to be 10 × 20 cm2. Both bulk and segmented targets are
analyzed: the segmented targets are supposed to be obtained by arranging, side by side, 200 tiles of
1 cm × 1 cm transversal area on a rectangular frame 20 cm wide and 10 cm height. The heat power
density inside the 100Mo targets is activated by the “BFE” (Body Force Element) command to define
body loads, applied according the spatial profile of the energy deposition, on all the elements in which
the 100Mo target geometry has been discretized. The discretization of the 100Mo volumes is done using
SOLID70 elements since this kind of element is suitable for three-dimensional steady-state as well for
transient thermal analysis. The surface to surface radiation is set assigning the proper emissivity by
means of the surface load command “SF, RDSF” and specifying the enclosure that defines the surfaces
involved in the radiation heat exchange (i.e., in case of a bulk 100Mo target only two enclosures are
defined, while for a segmented target with n plates, the number of the enclosure considered is n + 1,
neglecting the radiation through the lateral thickness since its emitting surface is, depending on the
targets, from 1 to 2 orders of magnitude smaller than the target transversal ones). Several 100Mo target
configurations have been studied and for all these the 99Mo production at the end of irradiation and
the temperature field have been computed, seeking the optimal target configuration that can maximize
the 99Mo production keeping the internal temperature well below the fusion considered as reasonable
required operative constraints. At the end of our analysis, the 7 plates segmented target (2 mm thick,
10 × 20 cm2 area and 390 g mass) is assumed as a reference “realistic” target (see Table 6), since able
to provide an optimized and representative 99Mo production rate in NSFS at its full nominal power,
fulfilling all the thermal constraints. This target has been identified as result of technical considerations
that consider: (a) the geometry and size of the irradiation chamber of NSFS; (b) the need of using thin
plates despite bulk massive targets to facilitate the 99Mo extraction process and (c) the requirement to
work with as low as possible temperature in the irradiated materials.

Table 6. Optimized operation condition and data acquisition parameters for the ICP mass spectroscometry.

Forward Power 1550 W

Nebulizer gas 1.07 L/min
Carrier gas 1.09 L/min
Sample flow 100 µL/min
Torch single piece, quartz
Nebulizer Concentric quartz MicroMist Nebulizer
Spray chamber quartz impact bead
Makeup gas 0.00 L/min
Option gas 0.0%
Collision Cell gas (He) 5.0 mL/min and 10.0 mL/min (in High-Energy Mode)
Reaction Cell gas (H2) 6.0 mL/min
Octapole bias −18.0 V
KED 3.0 V
Dwell time 0.3 s

Nevertheless, it is not excluded that more suitable shapes and thicknesses could be found and
used, since the optimization process of the target will be completely defined only after the final
assessment of the design and operative parameters of the NSFS facility.



Molecules 2018, 23, 1872 13 of 19

Molecules 2018, 23, x 12 of 18 

 

constraints. At the end of our analysis, the 7 plates segmented target (2 mm thick, 10 × 20 cm2 

area and 390 g mass) is assumed as a reference “realistic” target (see Table 6), since able to 

provide an optimized and representative 99Mo production rate in NSFS at its full nominal power, 

fulfilling all the thermal constraints. This target has been identified as result of technical 

considerations that consider: (a) the geometry and size of the irradiation chamber of NSFS; (b) 

the need of using thin plates despite bulk massive targets to facilitate the 99Mo extraction process 

and (c) the requirement to work with as low as possible temperature in the irradiated materials. 

Table 6. Optimized operation condition and data acquisition parameters for the ICP mass 

spectroscometry. 

Forward Power 1550 W 

Nebulizer gas 1.07 L/min 

Carrier gas 1.09 L/min 

Sample flow 100 µL/min 

Torch single piece, quartz 

Nebulizer Concentric quartz MicroMist Nebulizer 

Spray chamber quartz impact bead 

Makeup gas 0.00 L/min 

Option gas 0.0% 

Collision Cell gas (He) 5.0 mL/min and 10.0 mL/min (in High-Energy Mode) 

Reaction Cell gas (H2) 6.0 mL/min 

Octapole bias −18.0 V 

KED 3.0 V 

Dwell time 0.3 s 

Nevertheless, it is not excluded that more suitable shapes and thicknesses could be found 

and used, since the optimization process of the target will be completely defined only after the 

final assessment of the design and operative parameters of the NSFS facility. 

 

Figure 11. 100Mo segmented target used to provide a realistic prediction of 99Mo production at NSFS 

(2 × 10 × 20 cm3): (upper left): gamma density; (upper right): total charged-particle density; (lower 

left): total energy deposition; (lower left) electromagnetic energy deposition. Data obtained by using 

MC Fluka code. All the results are per unit primary particle. The estimations have been obtained by 

Fluka (version 2011.2c.3) code, assuming a uniform and isotropic irradiation of 14 MeV neutrons 

coming from the NSFS wheel surfaces. 

Figure 11. 100Mo segmented target used to provide a realistic prediction of 99Mo production at NSFS
(2 × 10 × 20 cm3): (upper left): gamma density; (upper right): total charged-particle density; (lower
left): total energy deposition; (lower left) electromagnetic energy deposition. Data obtained by using
MC Fluka code. All the results are per unit primary particle. The estimations have been obtained
by Fluka (version 2011.2c.3) code, assuming a uniform and isotropic irradiation of 14 MeV neutrons
coming from the NSFS wheel surfaces.

3. Results and Discussion

3.1. 99Mo Production by Means of 14 MeV Neutrons

FNG is an accelerator-driven continuous neutron source which relies on the fusion reaction:

D + T → α (3.5 MeV) + n (14.1 MeV)

FNG produces almost monochromatic neutrons with a nominal maximum neutron emission rate
of 1011 s−1, well determined by means of an absolute measurement based on the so-called associated
alpha particle technique [29]. The natural molybdenum powder sample is irradiated at FNG for 15 min
with a measured neutron emission rate of 2.89 × 1010 s−1. In these experimental conditions, a 99Mo
specific activity of (2.32 ± 0.05) kBq g−1 is achieved at the reference time [8,25].

This result is used to benchmark the prediction of the activity obtained by MC calculations
performed by means of the Fluka code. The relevant role of MC simulations relies on the possibility of
estimating the specific activity taking correctly into account the geometrical and physical parameters
that cannot easily be described by analytical methods. In fact, we can evaluate the neutron spatial
distribution and all the involved reactions (transport and nuclear interactions) within extended
irradiation targets, including their actual chemical and isotopic composition. It is worth stress that
a competing 99Mo production mechanism in the sample used for the tests and simulations that is
98Mo(n,Υ)99Mo provide a negligible contribution or two reasons: (1) the thermal neutron component
at the irradiation position is about three order of magnitude lower in intensity than the 14 MeV
component; (2) the 98Mo(n,Υ)99Mo reaction induced by 14 MeV neutrons feature a cross section that
is found to be three order of magnitudes lower than the 100Mo(n,2n)99Mo one. The result for the
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99Mo specific activity obtained by means of the Fluka calculation is (2.50 ± 0.27) kBq g−1 that well
compares to the experimental value. The relative standard uncertainty on the calculated value is
obtained by combining all the uncertainties due, mainly, to: simulation statistics, 100Mo(n,2n)99Mo
cross section data and FNG neutron yield. Moreover, Fluka allows the building up of a dynamic
picture of all the occurring decay processes of the whole set of radionuclides produced within the
irradiated target. The specific activity of each calculated main impurity is shown in Table 3, where the
values are compared to those measured by gamma-ray spectrometry.

All the measured activities are traceable to the National Activity Standards maintained at the
Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) [25], thus minimizing the
uncertainty to the experimental data.

The set of measurements carried out at ENEA are a profitable step to build and assess a valuable
procedure for the computational and experimental verification of the 99Mo production using 14 MeV
neutrons, in controlled and reliable way. The peculiarities of the applied procedure can be summarized
as follows:

• use of a D-T fusion neutron source well-characterized in energy and emission rate;
• optimization of the experimental setup and irradiation time by MC calculations;
• exploitation of metrological tools to achieve high levels of accuracy and traceability for the 99Mo

and 99mTc activity measurements and MC benchmarking purposes.

3.2. Separation and Purification Process

A further step in our experiment is the extraction of the pertechnetate, i.e., the potentially injectable
99mTc radiopharmaceutical for SPECT. This is a mandatory step to completely assess the viability of
the whole process from 99Mo production toward a usable radiopharmaceutical.

To separate and purify the 99mTc obtained as decay product of the 99Mo produced at FNG,
an automatable extraction module based on solvent extraction has been developed. The choice of
this extraction procedure relies on the high efficiency demonstrated on this kind of application by
Chattopadhyay et al. [30,31] and Martini et al. [32,33]. Indeed, the selected affinity of pertechnetate for
the organic solvent methylethylketon (MEK) allows a high pertechnetate yield extraction (greater than
90% [20]) from an aqueous alkaline phase in which molybdate and other by-products remain in solution.
Furthermore, the combination of solvent extraction with column chromatography purification helps
in decreasing chemical and radiochemical contamination. Finally, the module enables the multiple
extraction procedure by saving the aqueous alkaline solution containing 99Mo that continues decaying
to 99mTc. The use of this extraction/purification technique enables the obtaining of a final product in
compliance with the threshold values imposed by the Pharmacopoeia for product injectability [34].
Figures 12 and 13 show, respectively, the gamma-ray spectra recorded by the High-Purity Germanium
(HPGe) detector after the 14 MeV neutron irradiation of the molybdenum powder sample at FNG and
after the extraction of the pertechnetate. The inserts show the same spectra but in logarithmic scale to
appreciate the intensities.
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3.3. Perspectives for NSFS

The benchmarked MC model for the 14 MeV neutron irradiation of the powder sample at
FNG enables the making of confident predictions of the nominal 99Mo activity obtainable at NSFS.
The latter is an intense 14 MeV neutron source based on D-T fusion reactions thoroughly described in
Refs. [14–16]. The nominal NSFS neutron emission rate, in continuous state, is about 4–5 × 1015 s−1,
i.e., more than 104 times higher than the nominal value available at FNG.

Taking into account the main thermal constraints on the maximum allowed temperature into
the molybdenum irradiation target (i.e., keeping the target below the melting point) and the current
available manufacturing options on the 100Mo enriched sintered disks (plates of the order of a few
millimeters thickness), a series of target configurations in the NSFS irradiation vacuum chamber have
been studied and evaluated (from bulk configurations to different solutions of segmented targets).
The aim is to provide a realistic and representative estimation of the predictable weekly 99Mo activity
production, considering the NSFS nominal neutron emission rate.
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A conservative, and rather pessimistic, irradiation duty cycle (DC) of about 50% (i.e., 22 h
dedicated to irradiation and 24 h for setup activities). An irradiation time of 22 h has been
assumed. on the base of the decay time curve of the transient equilibrium between 99Mo, precursor,
and 99mTc, daughter.

The thermal calculations have been performed by the ANSYS finite element code [35]. The heat
power deposition inside the target has been introduced according to the Fluka simulation results
on the total energy density deposition. The heat exchange by irradiation between the target (also
considering all its surfaces when segmented) and the NSFS neutron emitting surfaces has been also
simulated. A realistic reference target is considered that is made of seven equally spaced plates of
2 mm thickness and 10 × 20 cm2 transversal cross section, for a total enriched 100Mo mass of about
2.7 kg. The ANSYS calculations show that this target can be safely irradiated continuously for 22 h,
since the maximum temperature is predicted to be 732 K, well below the molybdenum melting point
(T = 2833 K). The 99Mo produced at the end of the irradiation in this case is expected to be 66 TBq, that
is almost 200 TBq in a week, according to the assumed conservative DC.

In a more optimistic (and realistic) DC scenario, with only a few hours interval between one
target irradiation and the following one, the total weekly amount of 99Mo achievable should be almost
doubled. In terms of 6-day Ci activity EOP (see Table 7), the conservative estimations in the case of the
segmented target, correspond to 44 TBq and 88 TBq per week for DC = 50% and 100%, respectively.

Table 7. 6-day Ci (EOP) 99Mo activity scenarios, achievable with a representative selection of 100Mo
target configuration, for an irradiation time of 22 h and a Duty Cycle of 50%; BT refers to bulk target,
ST refers to the segmented case. MMo is the 100Mo mass, θ the ratio between the maximum sample
temperature to the Molybdenum melting temperature and NAw is the nominal weekly activity at the
End Of Process (EOP).

Scenario ∆ [cm] MMo [Kg] θ NAw EOP [TBq]

BT * 1.5 2.8 0.30 34

ST * 0.2 ** (7 Plates)
0.1 ** (15 Plates)

2.7
2.8

0.25
0.19

44
37

* thickness of the single segment (2 mm pitch between the centers of two consecutives plates); ** All samples have
the same transverse area of 10 × 20 cm2.

4. Conclusions

From the values of the nominal weekly activity, NAw, calculated in the aforementioned scenarios,
we make a comparison between the nominal 6-day Ci-EOP activities achievable in a selection of
representative research nuclear fission reactors and NSFS, as reported in Table 8 [36].

Table 8. Nominal weekly activities (6-day Ci-EOP) for selection fission reactors and the accelerator-
driven 14 MeV neutron source NSFS.

Fission Facilities NAw [Bq]

HFR-PETTEN [37] 1.8 × 1014

SAFARI-PELINDABA [38] 9.2 × 1013

NRU-CHALK RIVER [39] 1.8 × 1014

OPAL-SYDNEY [40] 4.6 × 1013

D-T Fusion source
NSFS [14–16] (4.4 ÷ 8.8) × 1013

In Figure 14, the values listed in Table 8 are reported on a plot for an easier visual inspection,
where the weekly nominal world demand (444 TBq) is indicated as the reference quantity.
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NSFSmin and NSFSmax indicate the lower (44 TBq) and upper limit (88 TBq) of 99Mo achievable
production, respectively. The broken line marks the 6-day Ci weekly world demand. The inset shows
the fraction of the nominal 99Mo weekly world demand covered by the different irradiation sites.

It is found that the range of 99Mo production in NSFS is obvious if compared to that of the main
(but aging) nuclear fission reactors that cover quite a large fraction of the present 99Mo market.

It is also worth remarking that although the 99Mo production mechanism with D-T fusion
reactions is different with respect to the current one relying on the nuclear fission reactors, the overall
distribution chain from the production site to the final users is expected to remain unchanged.
Moreover, the 100Mo that did not interact during the first irradiation can be recovered and further
utilized for new irradiation rounds.

In summary, we investigated the 100Mo(n,2n)99Mo reaction in view of the possible production of
99mTc radiopharmaceutical, as one of the possible routes that are alternative to the 99Mo production
via 235U fission. To this aim, we performed a natural molybdenum powder target irradiation using
14 MeV neutrons from the accelerator-driven FNG facility, under a neutron emission rate of about
2.9 1010 s−1 for 15 min.

We obtain a specific 99Mo activity of (2.32 ± 0.05) kBq g−1, a measurement traceable to the
National Activity Standards of ENEA-INMRI. Furthermore, MC simulations based on the Fluka
code and benchmarked by the experimental data collected at FNG enable a quantitative and reliable
prediction of the 99Mo weekly activity that may be provided by NSFS, designed to deliver a neutron
emission rate of about 1015 s−1. It can be stated that NSFS can possibly produce a large weekly activity
of 99Mo, fulfilling the requirement expressed by international organizations (IAEA, OECD) of finding
a viable, suitable and safe production chain alternative to that based on 235U fission operative at
nuclear fission reactors.

This work highlights that a robust alternative can be achieved using intense 14 MeV neutron
fields such as the one expected to be achieved at NSFS. In the perspective, a high intensity 14 MeV
neutron source such as New Sorgentina Fusion Source (NSFS), may secure the long-term supply of
99Mo at global level and thus the production of high-purity 99mTc for medical applications.

Author Contributions: M.C. (Marco Capogni), A.P. and L.Q. conceived the experiment at FNG and implemented
both the M.C. (Marco Capogni) simulations to prepare the irradiation of the Moybdenum powder at the Frascati
Neutron Generator and the ANSYS calculation for the thermal analysis. M.A., G.P., S.L. and M.P. operated the
Frascati Neutron Generator for the irradiation and provided the experimental value of the neutron yield and the
average neutron flux inside the sample volume and calibrated the HPGe at FNG. A.D. provided the delivery of
the irradiated molybdenum powder from ENEA Frascati Research Center to ENEA Casaccia Research Center and
allowed the use of the radiochemical laboratory for extraction of the pertechnetate. M.C. (Mauro Capone) and
N.C. prepared the radiochemical laboratory for the extraction procedure and performed the ICP mass analysis
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