8 research outputs found

    Effects of anandamide in migraine: data from an animal model

    Get PDF
    Systemic nitroglycerin (NTG) produces spontaneous-like migraine attacks in migraine sufferers and induces a condition of hyperalgesia in the rat 4 h after its administration. Endocannabinoid system seems to be involved in the modulation of NTG-induced hyperalgesia, and probably, in the pathophysiological mechanisms of migraine. In this study, the analgesic effect of anandamide (AEA) was evaluated by means of the formalin test, performed in baseline conditions and following NTG-induced hyperalgesia in male Sprague–Dawley rats. AEA was administered 30 min before the formalin injection. In addition, the effect of AEA (administered 30 min before NTG injection) was investigated on NTG-induced Fos expression and evaluated 4 h following NTG injection. AEA induced a significant decrease in the nociceptive behavior during both phases of the formalin test in the animals treated with vehicle, while it abolished NTG-induced hyperalgesia during the phase II. Pre-treatment with AEA significantly reduced the NTG-induced neuronal activation in nucleus trigeminalis caudalis, confirming the results obtained in our previous study, and in area postrema, while the same treatment induced an increase of Fos expression in paraventricular and supraoptic nuclei of the hypothalamus, parabrachial nucleus, and periaqueductal grey. The study confirms that a dysfunction of the endocannabinoid system may contribute to the development of migraine attacks and that a pharmacological modulation of CB receptors can be useful for the treatment of migraine pain

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    Evaluation of ADMA-DDAH-NOS axis in specific brain areas following nitroglycerin administration: study in an animal model of migraine

    Get PDF
    BACKGROUND: Nitric oxide (NO) is known to play a key role in migraine pathogenesis, but modulation of NO synthesis has failed so far to show efficacy in migraine treatment. Asymmetric dimethylarginine (ADMA) is a NO synthase (NOS) inhibitor, whose levels are regulated by dimethylarginine dimethylaminohydrolase (DDAH). Systemic administration of nitroglycerin (or glyceryl trinitrate, GTN) is a NO donor that consistently induces spontaneous-like headache attacks in migraneurs. GTN administration induces an increase in neuronal NOS (nNOS) that is simultaneous with a hyperalgesic condition. GTN administration has been used for years as an experimental animal model of migraine. In order to gain further insights in the precise mechanisms involved in the relationships between NO synthesis and migraine, we analyzed changes induced by GTN administration in ADMA levels, DDHA-1 mRNA expression and the expression of neuronal and endothelial NOS (nNOS and eNOS) in the brain. We also evaluated ADMA levels in the serum. METHODS: Male Sprague–Dawley rats were injected with GTN (10 mg/kg, i.p.) or vehicle and sacrificed 4 h later. Brain areas known to be activated by GTN administration were dissected out and utilized for the evaluation of nNOS and eNOS expression by means of western blotting. Cerebral and serum ADMA levels were measured by means of ELISA immunoassay. Cerebral DDAH-1 mRNA expression was measured by means of RT-PCR. Comparisons between experimental groups were performed using the Mann Whitney test. RESULTS: ADMA levels and nNOS expression increased in the hypothalamus and medulla following GTN administration. Conversely, a significant decrease in DDAH-1 mRNA expression was observed in the same areas. By contrast, no significant change was reported in eNOS expression. GTN administration did not induce any significant change in serum levels of ADMA. CONCLUSION: The present data suggest that ADMA accumulates in the brain after GTN administration via the inhibition of DDAH-1. This latter may represent a compensatory response to the excessive local availability of NO, released directly by GTN or synthetized by nNOS. These findings prompt an additional mediator (ADMA) in the modulation of NO axis following GTN administration and offer new insights in the pathophysiology of migraine

    Neuroprotection by the PARP inhibitor PJ34 modulates cerebral and circulating RAGE levels in rats exposed to focal brain ischemia

    No full text
    The receptor for advanced glycation end products (RAGE) has a potential role as a damage-sensing molecule; however, to date, its involvement in the pathophysiology of stroke and its modulation following neuroprotective treatment are not completely understood. We have previously demonstrated that expression of distinct RAGE isoforms, recognized by different antibodies, is differentially modulated in the brain of rats subjected to focal cerebral ischemia. Here, we focus on the full-length membrane-bound RAGE isoform, showing that its expression is significantly elevated in the striatum, whereas it is reduced in the cortex of rats subjected to transient middle cerebral artery occlusion (MCAo). Notably, the reduction of cortical levels of full-length RAGE detected 24h after reperfusion is abolished by systemic administration of a neuroprotective dose of the poly(ADP-ribose) polymerase (PARP) inhibitor, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34). More interestingly, a significant reduction of plasma soluble RAGE (sRAGE) occurs 24h after reperfusion and this effect is reverted by a neuroprotective dose of PJ34. Soluble forms of RAGE, generated either by alternative splicing or by proteolysis of the full-length form, effectively bind advanced glycation end products, thereby competing with the cell surface full-length RAGE, thus providing a 'decoy' function that may counteract the adverse effects of receptor signaling in neurons and may possibly exert cytoprotective effects. Thus, our data confirm the important role of RAGE in ischemic cerebral damage and, more interestingly, suggest the potential use of sRAGE as a blood biomarker of stroke severity and of neuroprotective treatment efficacy

    Acute Delta Hepatitis in Italy spanning three decades (1991-2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    No full text
    corecore