9 research outputs found

    Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: Membrane fouling control and long-term stability

    Get PDF
    Fenton oxidation is one of the promising advanced oxidation processes for the efficient elimination of pharmaceuticals from wastewater. The strong oxidation ability of this process is attributed to the generation of highly reactive hydroxyl radicals (radical dotOH) in the solution. In the present study, heterogeneous micro-sized zeolite catalysts that contain iron have been used in the Fenton-like process. This process enables operation in a wide pH range and facilitates the reuse of catalysts. Indeed, the coupling of the heterogeneous Fenton reaction with membrane filtration will ensure catalyst retention in the effluent compartment during the continuous water treatment. This study then investigated the fouling control strategies and membrane long-term stability in the heterogeneous Fenton reactor. During the filtration of the zeolite catalyst suspension, the critical flux for irreversible fouling was determined. One of the strategies to control membrane fouling can then be to choose an operating flux below this critical flux. In the case where a flux value above the critical flux is chosen, the results demonstrated total efficiency of hydrodynamic backwashing to eliminate hydraulically reversible fouling. Concerning the question of polymeric membrane long-term stability, it has been demonstrated that due to contact with the Fenton medium, membrane material undergoes oxidation and polymeric chain scissions. This latter is strongly linked to the decline in the mechanical resistance of membranes. In the tested conditions, despite the degradation to membrane material, the critical flux for irreversible fouling remained unchanged on aged membranes

    Ozonation of nanofiltration concentrates within the framework of the reuse of domestic wastewaters.

    No full text
    La croissance démographique mondiale induit une pression accrue sur les ressources en eau potable. Une des solutions pour répondre à cette problématique environnementale est de réutiliser les eaux en sortie de station d’épuration (STEP). Cependant, la présence de microorganismes pathogènes et de micropolluants bio-récalcitrants et potentiellement toxiques ne permet pas une réutilisation directe des effluents urbains. Les procédés membranaires peuvent alors être envisagés afin d’éliminer efficacement ces polluants à l’état de trace. Cependant, la mise en œuvre des procédés membranaires implique la production de retentâts concentrés en micropolluants dont le traitement n’est, à ce jour, pas envisagé. Cette thèse propose alors d’étudier l’ozonation pour le traitement de retentâts de nanofiltration (NF) dans le cadre de la réutilisation des eaux usées, l’ozone étant un puissant oxydant et précurseur de radicaux hydroxyles. Pour cela, quatre micropolluants pharmaceutiques ont été sélectionnés comme molécules cibles. Par la suite, l’étude de la NF a mis en évidence qu’elle peut constituer une alternative viable au standard industriel qu’est l’osmose inverse en assurant des rétentions élevées pour des coûts opératoires moindres. L’ozonation s’avère efficace comme prétraitement des concentrâts en éliminant totalement les polluants les plus réactifs à l’ozone moléculaire. Toutefois, ce procédé reste limité quant à l’abattement des polluants réfractaire à l’ozone du fait de l’inhibition de la voie radicalaire par la forte teneur en matière organique des retentâts. Finalement, bien que cette association de procédés soit prometteuse, un traitement supplémentaire en aval de l’ozonation serait nécessaire afin de permettre la réutilisation des retentâts traités et aboutir à l’avènement d’une filière épuratoire à zéro rejet liquideGlobal population growth induces increased threat on drinking water resources. One way to address this environmental issue is to reuse water from wastewater treatment plant (WWTP). However, the presence of pathogenic microorganisms and potentially toxic organic micropollutants does not allow a direct reuse of urban effluents. Membrane processes such RO or NF can be considered to effectively eliminate these pollutants. However, the integration of membrane processes involves the production of concentrated retentates which require to be disposed. To date, no treatment is set up to manage safely this pollution. This thesis project focuses on the application of ozonation for the treatment of NF retentates in the framework of the wastewater reuse. Ozonation is a powerful oxidation process able to react and degrade a wide range of organic pollutants. Four pharmaceutical micropollutants frequently detected in wastewater, were selected as target molecules. This study highlighted that NF can represent a viable alternative to the commonly used reverse osmosis process ensuring high retention at much lower operating costs. Ozonation appear to be effective to degrade the most reactive pollutants toward molecular ozone. However, this method is limited for the reduction of refractory ozone pollutants due to the inhibition of the radical chain by the high content of organic matter in the retentates. Finally, the ozonation processe appear to be a promising NF retentate treatment and further processing downstream of ozonation should allow reuse of treated retentates and lead to the emergence of a zero liquid discharge treatment scheme

    Urban wastewater reuse using a coupling between nanofiltration and ozonation: Techno-economic assessment

    No full text
    International audienceCombination of nanofiltration and ozonation was investigated for the treatment of urban wastewater. First objective was to demonstrate that nanofiltration can be used instead of reverse osmosis as it enables good rejection rates with reduced cost because of lower operating and maintenance costs. In this way, this paper presents an economic and technical evaluation of the proposed coupling where ozonation is used to treat retentates from nanofiltration. Reverse Osmosis System Analysis (ROSA) software was applied to simulate the filtration design. The effect of membrane choice on specific energy consumption, capital, operation and maintenance costs and scaling potential was investigated. It was demonstrated that using nanofiltration instead of reverse osmosis enable cost saving of 35 k/yearfor125m(3)/h.Secondobjectivewastoevaluatetheimpactofthetreatmentofretentatesbyozonationontheglobalcost.Itwashighlightedthatthecouplingwouldbeanacceptablesolutionfromaneconomicpointofviewforwastewaterreuse.Thepossiblereuseofbothpermeateandconcentrateenableanoperatingcostsavingof15.4k/year for 125 m(3)/h. Second objective was to evaluate the impact of the treatment of retentates by ozonation on the global cost. It was highlighted that the coupling would be an acceptable solution from an economic point of view for wastewater reuse. The possible reuse of both permeate and concentrate enable an operating cost saving of 15.4 k/year for 125 m(3)/h. An optimum recovery rate of 80% was found for which cost of membrane process is balanced by a decrease in the cost of ozonation. (C) 2019 Institution of Chemical Engineer

    Nanofiltration membrane bioreactor for removing pharmaceutical compounds

    No full text
    International audienc
    corecore