541 research outputs found

    Homogeneity, Flatness and "Large" Extra Dimensions

    Get PDF
    We consider a model in which the universe is the direct product of a (3+1)-dimensional Friedmann, Robertson-Walker (FRW) space and a compact hyperbolic manifold (CHM). Standard Model fields are confined to a point in the CHM (i.e. to a brane). In such a space, the decay of massive Kaluza-Klein modes leads to the injection of any initial bulk entropy into the observable (FRW) universe. Both Kolmogoro-Sinai mixing due to the non-integrability of flows on CHMs and the large statistical averaging inherent in the collapse of the initial entropy onto the brane smooth out any initial inhomogeneities in the distribution of matter and of 3-curvature on any slice of constant 3-position. If, as we assume, the initial densities and curvatures in each fundamental correlation volume are drawn from some universal underlying distributions independent of location within the space, then these smoothing mechanisms effectively reduce the density and curvature inhomogeneities projected onto the FRW. This smoothing is sufficient to account for the current homogeneity and flatness of the universe. The fundamental scale of physics can be \gsim 1TeV. All relevant mass and length scales can have natural values in fundamental units. All large dimensionless numbers, such as the entropy of the universe, are understood as consequences of the topology of spacetime which is not explained. No model for the origin of structure is proffered.Comment: minor changes, matches version published in Phys. Rev. Let

    Advanced septic arthritis of the shoulder treated by a two-stage arthroplasty.

    Get PDF
    The usual treatment of septic shoulder arthritis consists of arthroscopic or open lavage and debridement. However, in patients with advanced osteoarthritic changes and/or massive rotator cuff tendon tears, infection eradication can be challenging to achieve and the functional outcome is often not satisfying even after successful infection eradication. In such cases a two-stage approach with initial resection of the native infected articular surfaces, implantation of a cement spacer before final treatment with a total shoulder arthroplasty in a second stage is gaining popularity in recent years with the data in literature however being still limited. To evaluate the results of a short interval two-stage arthroplasty approach for septic arthritis with concomitant advanced degenerative changes of the shoulder joint. We retrospectively included five consecutive patients over a five-year period and evaluated the therapeutic management and the clinical outcome assessed by disability of the arm, shoulder and hand (DASH) score and subjective shoulder value (SSV). All procedures were performed through a deltopectoral approach and consisted in a debridement and synovectomy, articular surface resection and insertion of a custom made antibiotic enriched cement spacer. Shoulder arthroplasty was performed in a second stage. Mean age was 61 years (range, 47-70 years). Four patients had previous surgeries ahead of the septic arthritis. All patients had a surgical debridement ahead of the index procedure. Mean follow-up was 13 mo (range, 6-24 mo). Persistent microbiological infection was confirmed in all five cases at the time of the first stage of the procedure. The shoulder arthroplasties were performed 6 to 12 wk after insertion of the antibiotic-loaded spacer. There were two hemi and three reverse shoulder arthroplasties. Infection was successfully eradicated in all patients. The clinical outcome was satisfactory with a mean DASH score and SSV of 18.4 points and 70% respectively. Short interval two-stage approach for septic shoulder arthritis is an effective treatment option. It should nonetheless be reserved for selected patients with advanced disease in which lavage and debridement have failed

    Effects of Extra Space-time Dimensions on the Fermi Constant

    Get PDF
    Effects of Kaluza-Klein excitations associated with extra dimensions with large radius compactifications on the Fermi constant are explored. It is shown that the current precision determinations of the Fermi constant, of the fine structure constant, and of the W and Z mass put stringent constraints on the compactification radius. The analysis excludes one extra space time dimension below 1.6\sim 1.6 TeV, and excludes 2, 3 and 4 extra space dimensions opening simultaneously below \sim 3.5 TeV, 5.7 TeV and 7.8 TeV at the 9090% CL. Implications of these results for future collider experiments are discussed.Comment: 12 pages including one figur

    A general formula of the effective potential in 5D SU(N) gauge theory on orbifold

    Full text link
    We show a general formula of the one loop effective potential of the 5D SU(N) gauge theory compactified on an orbifold, S1/Z2S^1/Z_2. The formula shows the case when there are fundamental, (anti-)symmetric tensor and adjoint representational bulk fields. Our calculation method is also applicable when there are bulk fields belonging to higher dimensional representations. The supersymmetric version of the effective potential with Scherk-Schwarz breaking can be obtained straightforwardly. We also show some examples of effective potentials in SU(3), SU(5) and SU(6) models with various boundary conditions, which are reproduced by our general formula.Comment: 22 pages;minor corrections;references added;typos correcte

    Radion Dynamics and Phenomenology in the Linear Dilaton Model

    Full text link
    We investigate the properties of the radion in the 5D linear dilaton model arising from Little String Theory. A Goldberger-Wise type mechanism is used to stabilise a large interbrane distance, with the dilaton now playing the role of the stabilising field. We consider the coupled fluctuations of the metric and dilaton fields and identify the physical scalar modes of the system. The wavefunctions and masses of the radion and Kaluza-Klein modes are calculated, giving a radion mass of order the curvature scale. As a result of the direct coupling between the dilaton and Standard Model fields, the radion couples to the SM Lagrangian, in addition to the trace of the energy-momentum tensor. The effect of these additional interaction terms on the radion decay modes is investigated, with a notable increase in the branching fraction to photons. We also consider the effects of a non-minimal Higgs coupling to gravity, which introduces a mixing between the Higgs and radion modes. Finally, we calculate the production cross section of the radion at the LHC and use the current Higgs searches to place constraints on the parameter space.Comment: 28 pages, 7 figures; v2: error in radion-gauge boson Feynman rules corrected, version published in JHE

    On Infrared Effects in de~Sitter Background

    Full text link
    We have estimated higher order quantum gravity corrections to de~Sitter spacetime. Our results suggest that, while the classical spacetime metric may be distorted by the graviton self-interactions, the corrections are relatively weaker than previously thought, possibly growing like a power rather than exponentially in time.Comment: 17, UM-TH-94-11, (1 postscript fig. at end

    Explicit CP violation in the Dine-Seiberg-Thomas model

    Full text link
    The possibility of explicit CP violation is studied in a supersymmetric model proposed by Dine, Seiberg, and Thomas, with two effective dimension-five operators. The explicit CP violation may be triggered by complex phases in the coefficients for the dimension-five operators in the Higgs potential, and by a complex phase in the scalar top quark masses. Although the scenario of explicit CP violation is found to be inconsistent with the experimental data at LEP2 at the tree level, it may be possible at the one-loop level. For a reasonable parameter space, the masses of the neutral Higgs bosons and their couplings to a pair of ZZ bosons are consistent with the LEP2 data, at the one-loop level.Comment: 5 pages, 2 figure

    A new fit to solar neutrino data in models with large extra dimensions

    Full text link
    String inspired models with millimeter scale extra dimensions provide a natural way to understand an ultralight sterile neutrino needed for a simultaneous explanation of the solar, atmospheric and LSND neutrino oscillation results. The sterile neutrino is the bulk neutrino (νB\nu_B) postulated to exist in these models, and it becomes ultralight in theories that prevent the appearance of its direct mass terms. Its Kaluza-Klein (KK) states then add new oscillation channels for the electron neutrino emitted from the solar core. We show that successive MSW transitions of solar νe\nu_e to the lower lying KK modes of νB\nu_B in conjunction with vacuum oscillations between the νe\nu_e and the zero mode of νB\nu_B provide a new way to fit the solar neutrino data. Using just the average rates from the three types of solar experiments, we predict the Super-Kamiokande spectrum with 73\% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum. We discuss both intermediate and low string scale models where the desired phenomenology can emerge naturally.Comment: 20 pages, contains updated SuperK results and reference

    Ising-link Quantum Gravity

    Get PDF
    We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2^links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the ``curvature susceptibility'' which grows with increasing system size. However, the value of the corresponding critical exponent as well as the behavior of the curvature at the transition differ from that found by Hamber and Williams for the Regge theory with continuously varying link lengths.Comment: 11 page

    The Randall-Sundrum Scenario with an Extra Warped Dimension

    Get PDF
    We investigate a scenario with two four-branes embedded in six dimensions. When the metric is periodic and compact in one of the dimensions parallel to the branes, the value of the effective cosmological constant for the remaining five dimensions can assume a variety of values, determined by the dependence of the metric on the sixth dimension. The picture that emerges resembles the Randall-Sundrum model but with an extra warped dimension that allows the usual brane-bulk fine tuning to be satisfied without finely tuning any of the parameters in the underlying six dimensional theory. Although the action contains terms with four derivatives of the metric, we show that when the branes have a finite, natural thickness, such terms have only a small effect on the Randall-Sundrum structure. The presence of these four derivative terms also allows a configuration that resembles that produced by a domain wall but which results from gravity alone.Comment: 12 pages, 3 figures, requires harvmac and picte
    corecore