909 research outputs found

    On Information Granulation via Data Filtering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study

    Get PDF
    Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recognition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this companion paper, we follow our previous paper (Martino et al. in Algorithms 15(5):148, 2022) in the context of comparing different strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of using or neglecting the ground-truth class labels in the granulation process and, conversely, to our previous work, we employ a filtering-based approach for the synthesis of information granules instead of a clustering-based one. Computational results on 6 open-access data sets corroborate the robustness of our filtering-based approach with respect to data stratification, if compared to a clustering-based granulation stage

    Sources of possible artefacts in the contrast evaluation for the backscattering polarimetric images of different targets in turbid medium

    No full text
    International audienceIt is known that polarization-sensitive backscattering images of different objects in turbid media may show better contrasts than usual intensity images. Polarimetric image contrast depends on both target and background polarization properties and typically involves averaging over groups of pixels, corresponding to given areas of the image. By means of numerical modelling we show that the experimental arrangement, namely, the shape of turbid medium container, the optical properties of the container walls, the relative positioning of the absorbing, scattering and reflecting targets with respect to each other and to the container walls, as well as the choice of the image areas for the contrast calculations, can strongly affect the final results for both linearly and circularly polarized light

    Modelling and recognition of protein contact networks by multiple kernel learning and dissimilarity representations

    Get PDF
    Multiple kernel learning is a paradigm which employs a properly constructed chain of kernel functions able to simultaneously analyse different data or different representations of the same data. In this paper, we propose an hybrid classification system based on a linear combination of multiple kernels defined over multiple dissimilarity spaces. The core of the training procedure is the joint optimisation of kernel weights and representatives selection in the dissimilarity spaces. This equips the system with a two-fold knowledge discovery phase: by analysing the weights, it is possible to check which representations are more suitable for solving the classification problem, whereas the pivotal patterns selected as representatives can give further insights on the modelled system, possibly with the help of field-experts. The proposed classification system is tested on real proteomic data in order to predict proteins' functional role starting from their folded structure: specifically, a set of eight representations are drawn from the graph-based protein folded description. The proposed multiple kernel-based system has also been benchmarked against a clustering-based classification system also able to exploit multiple dissimilarities simultaneously. Computational results show remarkable classification capabilities and the knowledge discovery analysis is in line with current biological knowledge, suggesting the reliability of the proposed system

    Calibration techniques for binary classification problems: A comparative analysis

    Get PDF
    Calibrating a classification system consists in transforming the output scores, which somehow state the confidence of the classifier regarding the predicted output, into proper probability estimates. Having a well-calibrated classifier has a non-negligible impact on many real-world applications, for example decision making systems synthesis for anomaly detection/fault prediction. In such industrial scenarios, risk assessment is certainly related to costs which must be covered. In this paper we review three state-of-the-art calibration techniques (Platt’s Scaling, Isotonic Regression and SplineCalib) and we propose three lightweight procedures based on a plain fitting of the reliability diagram. Computational results show that the three proposed techniques have comparable performances with respect to the three state-of-the-art approaches

    Accidental impacts on historical and architectural heritage in port areas: the case of Brindisi

    Get PDF
    Most port areas can produce impacts on the historical and architectural heritage, leading to rapid pathological effects and generating high risks in terms of damages and losses of historical, artistic, and cultural values. In effect, in addition to stationary actions (air pollution, waste, water discharge), port activities could generate exceptional impacts: the so-called “major accidents”, such as fires or explosions and chemical releases. The present contribution analyses and discusses a given case, the port of Brindisi, suggesting a methodology for the assessment of exceptional impacts in ports, in order to identify those potential accidents and their effects on the historical landscape. It points out that, as often occurs in ports, the most frequent major accidents are caused by activities involving hazardous materials. The methodology proposed for this given case aims to demonstrate that in the historical port areas, such as in the Mediterranean Sea, the development and management should be accompanied, or even oriented to the protection of the historical and cultural landscape.Postprint (author's final draft

    Effect of speckle on APSCI method and Mueller Imaging

    No full text
    7 pagesInternational audienceThe principle of the polarimetric imaging method called APSCI (Adapted Polarization State Contrast Imaging) is to maximize the polarimetric contrast between an object and its background using specific polarization states of illumination and detection. We perform here a comparative study of the APSCI method with existing Classical Mueller Imaging(CMI) associated with polar decomposition in the presence of fully and partially polarized circular Gaussian speckle. The results show a noticeable increase of the Bhattacharyya distance used as our contrast parameter for the APSCI method, especially when the object and background exhibit several polarimetric properties simultaneously

    Polarimetric imaging for cancer diagnosis and staging

    No full text
    A medical imaging technique that relies on light polarization could become a fast and accurate optical method for detecting cancer and determining the stage of the disease

    The origins of polarimetric image contrast between healthy and cancerous human colon tissue

    No full text
    International audienceExperimentally measured spectral Mueller matrix images of ex vivo human colon tissue revealed the contrast enhancement between healthy and cancerous zones of colon specimen compared to unpolarized intensity images. Cancer development starts with abnormal changes which being not yet visible macroscopically may alter the polarization of reflected light. We have shown with experiments and modeling that light scattering by small (sub wavelength) scatterers and light absorption (mainly due to blood hemoglobin) are the key factors for observed polarimetric image contrast. These findings can pave the way for the alternative optical technique for the monitoring and early detection of cancer

    Modeling the optical properties of self-organized arrays of liquid crystal defects

    No full text
    International audienceLocal full Mueller matrix measurements in the Fourier plane of a microscope lens were used to determine the internal anisotropic ordering in periodic linear arrays of smectic liquid crystal defects, known as 'oily streaks'. We propose a single microstructure-dependent model taking into account the anisotropic dielectric function of the liquid crystal that reproduces the smectic layers orientation and organization in the oily streaks. The calculated Mueller matrix elements are compared to the measured data to reveal the anchoring mechanism of the smectic oily streaks on the substrate and evidence the presence of new type of defect arrangement. Beyond the scientific inquiry, the understanding and control of the internal structure of such arrays offer technological opportunities for developing liquid-crystal based sensors and self-assembled nanostructures
    corecore