16 research outputs found

    Serum Albumin Is Inversely Associated With Portal Vein Thrombosis in Cirrhosis

    Get PDF
    We analyzed whether serum albumin is independently associated with portal vein thrombosis (PVT) in liver cirrhosis (LC) and if a biologic plausibility exists. This study was divided into three parts. In part 1 (retrospective analysis), 753 consecutive patients with LC with ultrasound-detected PVT were retrospectively analyzed. In part 2, 112 patients with LC and 56 matched controls were entered in the cross-sectional study. In part 3, 5 patients with cirrhosis were entered in the in vivo study and 4 healthy subjects (HSs) were entered in the in vitro study to explore if albumin may affect platelet activation by modulating oxidative stress. In the 753 patients with LC, the prevalence of PVT was 16.7%; logistic analysis showed that only age (odds ratio [OR], 1.024; P = 0.012) and serum albumin (OR, -0.422; P = 0.0001) significantly predicted patients with PVT. Analyzing the 112 patients with LC and controls, soluble clusters of differentiation (CD)40-ligand (P = 0.0238), soluble Nox2-derived peptide (sNox2-dp; P < 0.0001), and urinary excretion of isoprostanes (P = 0.0078) were higher in patients with LC. In LC, albumin was correlated with sCD4OL (Spearman's rank correlation coefficient [r(s)], -0.33; P < 0.001), sNox2-dp (r(s), -0.57; P < 0.0001), and urinary excretion of isoprostanes (r(s), -0.48; P < 0.0001) levels. The in vivo study showed a progressive decrease in platelet aggregation, sNox2-dp, and urinary 8-iso prostaglandin F2 alpha-III formation 2 hours and 3 days after albumin infusion. Finally, platelet aggregation, sNox2-dp, and isoprostane formation significantly decreased in platelets from HSs incubated with scalar concentrations of albumin. Conclusion: Low serum albumin in LC is associated with PVT, suggesting that albumin could be a modulator of the hemostatic system through interference with mechanisms regulating platelet activation

    Visuo-spatial attention and semantic memory competition in the parietal cortex

    No full text
    Abstract Neuroimaging studies associate specific functional roles to distinct brain regions investigating separate cognitive processes using dedicated tasks. For example, using both correlative (i.e., fMRI) and causal (i.e., TMS) approaches it has been shown the involvement of intra-parietal sulcus (IPS), as part of the dorsal attention network, in spatial attentional tasks as well as the importance of the angular gyrus (AG), as part of the default mode network, during the selection of relevant information in semantic memory. Nonetheless, in our daily life attention and semantic memory are rarely needed in isolation. In the present TMS study we investigate how the brain combines attentional and semantic memory demands in a single task. Results showed that, compared to a pseudo-TMS, stimulation of IPS, but not AG, affects behavioral performance, thus suggesting its preponderant role in such a combined task. Moreover, the lack of difference between the effect of IPS and AG stimulations seems to suggest that the two regions may be coactivated or that a third-party source might indirectly mediate the interaction between the two networks

    Subclinical impairment of dynamic left ventricular systolic and diastolic function in patients with obstructive sleep apnea and preserved left ventricular ejection fraction.

    Full text link
    BACKGROUND: Hypoxia affects myocardial oxygen supply resulting in subclinical cardiac dysfunction in obstructive sleep apnea (OSA) patients, with cardiovascular complications being associated with increased oxidative burst (OB). The aims of our study were to assess left ventricular (LV) dynamic myocardial deformation and diastolic reserve at rest and upon exercise, along with OB determination in this patients subset. METHODS: Conventional echocardiography, Doppler myocardial imaging and LV 2D speckle tracking echocardiography were performed in 55 OSA patients with preserved LV ejection fraction (EF) and 35 age and sex-comparable healthy controls. Peripheral OB levels were evaluated by flow cytometry. RESULTS: Despite comparable LVEF, LV global longitudinal strain (GLS) was significantly reduced in OSA at rest (- 13.4 ± 3.8 vs - 18.4 ± 3.3 in controls, P <  0.001) and at peak exercise (- 15.8 ± 2.6 vs - 23.4 ± 4.3, P <  0.001). Systolic pulmonary artery pressure (sPAP) and E/E' ratios increase during effort were higher in OSA than in controls (ΔsPAP 44.3% ± 6.4 vs 32.3% ± 5.5, P <  0.0001, and ΔE/E' 87.5% ± 3.5 vs 25.4% ± 3.3, P <  0.0001, respectively). The best correlate of E/E' at peak stress was peak exertion capacity (r = - 0.50, P <  0.001). OB was also increased in OSA patients (P = 0.001) but, unlike OSA severity, was not associated with LV diastolic dysfunction. CONCLUSIONS: Evaluation of diastolic function and myocardial deformation during exercise is feasible through stress echocardiography. OSA patients with preserved LVEF show subclinical LV systolic dysfunction, impaired LV systolic and diastolic reserve, reduced exercise tolerance, and increased peripheral levels of OB. Therapy aimed at increasing LV diastolic function reserve might improve the quality of life and exercise tolerability in OSA patients

    Porous Gig-Lox TiO2 Doped with N2 at Room Temperature for P-Type Response to Ethanol

    No full text
    Nanostructured materials represent a breakthrough in many fields of application. Above all for sensing, the use of nanostructures with a high surface/volume ratio is strategic to raise the sensitivity towards dangerous environmental gas species. A new Dc-Reactive sputtering Deposition method has been applied to grow highly porous p-type nitrogen-doped titanium oxide layers by modifying the previously developed reactive sputtering method called gig-lox. The doping of the films was achieved at room temperature by progressive incorporation of nitrogen species during the deposition process. Two different amounts of N2 were introduced into the deposition chamber at flow rates of 2 and 5 standard cubic centimeter per minutes (sccm) for doping. It has been found that the N2 uptake reduces the deposition rate of the TiO2 film whilst the porosity and the roughness of the grown layer are not penalized. Despite the low amount of N2, using 2 sccm of gas resulted in proper doping of the TiO2 film as revealed by XPS Analyses. In this case, nitrogen atoms are mainly arranged in substitutional positions with respect to the oxygen atoms inside the lattice, and this defines the p-type character of the growing layer. Above this strategic structural modification, the multibranched spongy porosity, peculiar of the gig-lox growth, is still maintained. As proof of concept of the achievements, a sensing device was prepared by combining this modified gig-lox deposition method with state-of-the-art hot-plate technology to monitor the electrical response to ethanol gas species. The sensor exhibited a sensitivity of a factor of &asymp;2 to 44 ppm of ethanol at &asymp;200 &deg;C as measured by a rise in the layer resistivity according to the p-type character of the material. At the higher temperature of &asymp;350 &deg;C, the sensor turned to n-type as without doping. This behavior was related to a loss of nitrogen content inside the film during the annealing. It was indeed proved that p-type doping of a gig-lox sponge during growth is feasible, even at room temperature, without losing the layer porosity and the capability to host and detect environmental species. Moreover, the material integration on a device is simply done as the last production step. Easy TiO2 doping procedures, combined with porosity, are of general purpose and interest for several applications even on flexible substrates
    corecore