16,212 research outputs found

    Study of the performance of the NA62 Small-Angle Calorimeter at the DAΦ\PhiNE Linac

    Get PDF
    The measurement of BR(K+→π+ννˉ)BR(K^+\to\pi^+\nu\bar{\nu}) with 10% precision by the NA62 experiment requires extreme background suppression. The Small Angle Calorimeter aims to provide an efficient veto for photons flying at angles down to zero with respect to the kaon flight direction. The initial prototype was upgraded and tested at the Beam Test Facility of the DAΦ\PhiNE Linac at Frascati. The energy resolution and the efficiency were measured and are presented.Comment: 5 pages, 7 figure

    Analysis of X-ray flares in GRBs

    Get PDF
    We present a detailed study of the spectral and temporal properties of the X-ray flares emission of several GRBs. We select a sample of GRBs which X-ray light curve exhibits large amplitude variations with several rebrightenings superposed on the underlying three-segment broken powerlaw that is often seen in Swift GRBs. We try to understand the origin of these fluctuations giving some diagnostic in order to discriminate between refreshed shocks and late internal shocks. For some bursts our time-resolved spectral analysis supports the interpretation of a long-lived central engine, with rebrightenings consistent with energy injection in refreshed shocks as slower shells generated in the central engine prompt phase catch up with the afterglow shock at later times.Comment: 9 pages, 3 figures. Invited talk at the Swift-Venice 2006 meeting to be published by "Il Nuovo Cimento

    Induction and repair of DNA DSB as revealed by H2AX phosphorylation foci in human fibroblasts exposed to low-and high-LET radiation: Relationship with early and delayed reproductive cell death

    Get PDF
    The spatial distribution of radiation-induced DNA breaks within the cell nucleus depends on radiation quality in terms of energy deposition pattern. It is generally assumed that the higher the radiation linear energy transfer (LET), the greater the DNA damage complexity. Using a combined experimental and theoretical approach, we examined the phosphorylation-dephosphorylation kinetics of radiation-induced γ-H2AX foci, size distribution and 3D focus morphology, and the relationship between DNA damage and cellular end points (i.e., cell killing and lethal mutations) after exposure to gamma rays, protons, carbon ions and alpha particles. Our results showed that the maximum number of foci are reached 30 min postirradiation for all radiation types. However, the number of foci after 0.5 Gy of each radiation type was different with gamma rays, protons, carbon ions and alpha particles inducing 12.64 ± 0.25, 10.11 ± 0.40, 8.84 ± 0.56 and 4.80 ± 0.35 foci, respectively, which indicated a clear influence of the track structure and fluence on the numbers of foci induced after a dose of 0.5 Gy for each radiation type. The γ-H2AX foci persistence was also dependent on radiation quality, i.e., the higher the LET, the longer the foci persisted in the cell nucleus. The γ-H2AX time course was compared with cell killing and lethal mutation and the results highlighted a correlation between cellular end points and the duration of γ-H2AX foci persistence. A model was developed to evaluate the probability that multiple DSBs reside in the same gamma-ray focus and such probability was found to be negligible for doses lower than 1 Gy. Our model provides evidence that the DSBs inside complex foci, such as those induced by alpha particles, are not processed independently or with the same time constant. The combination of experimental, theoretical and simulation data supports the hypothesis of an interdependent processing of closely associated DSBs, possibly associated with a diminished correct repair capability, which affects cell killing and lethal mutation

    Modeling turbulence perturbation in a laboratory boundary layer flow over hills

    Get PDF
    A second-order closure was used to investigate the effect of a gentle slope hill on the second moments of velocity. An approximated equation system was solved in streamlines coordinates and the mean flow was obtained by means of a linearized model. Results are tested on a very rich data set of two experiments with different slopes

    Extinction properties of the X-ray bright/optically faint afterglow of GRB 020405

    Full text link
    We present an optical-to-X-ray spectral analysis of the afterglow of GRB 020405. The optical spectral energy distribution not corrected for the extragalactic extinction is significantly below the X-ray extrapolation of the single powerlaw spectral model suggested by multiwavelength studies. We investigate whether considerable extinction could explain the observed spectral ``mismatch'' by testing several types of extinction curves. For the first time we test extinction curves computed with time-dependent numerical simulations of dust grains destruction by the burst radiation. We find that an extinction law weakly depen dent on wavelength can reconcile the unabsorbed optical and X-ray data with the expected synchrotron spectrum. A gray extinction law can be provided by a dust grain size distribution biased toward large grains.Comment: 6 pages, 5 figures, accepted for publication on A&

    The use of aerial- and close-range photogrammetry for the mapping of the Lavini di Marco tracksite (Hettangian, Southern Alps, NE Italy)

    Get PDF
    (EXCERPT FROM ABSTRACT) Close-range photogrammetry was executed following the procedure proposed by Mallison & Wings (2014). More than seventy 3D models were obtained and interpreted by means of color-coded and contour line images, which allow to improve the ichno- logical knowledge of the tracksite. The 3D models of the best-preserved tracks were used for the osteological reconstruction of the trackmakers’ autopodia, supposing the arthral position of the phalangeal pads. Three indirect methods were used to correlate tracks and their trackmakers: (i) synapomorphy-based approach; (ii) phenetic correlation; (iii) coincidence correlation (see Carrano & Wilson, 2001) The final map was produced with different level of knowledge due to the distribution of tracks and current state of site preservation. Furthermore, it represents a complete documentation that will be used for future work of enhancement, preservation and valorization of the tracksite. The ichnotaxonomical review of the quadrupedal trackways led us to emend the diagnosis of Lavinipes cheminii Avanzini et al. (2003) and to assign several other sparse tracks and trackways to L. chemini. The skeletal reconstruction of fore and hind limbs points towards Gongxianosaurus sp. as the most suitable trackmaker of L. cheminii. The herein supposed Laurasian affinity of the Lavini di Marco dinosaur assemblage clashes with the previous hypotheses that always link the Southern Alps sector with the Gondwana mainland

    Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy formation models

    Get PDF
    We derive the contribution to the extragalactic gamma-ray background (EGB) from AGN winds and star-forming galaxies by including a physical model for the gamma-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast wave as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Fermi-LAT in the range between 100 MeV and 820 GeV. We find that AGN winds can provide ~35±\pm15% of the observed EGB in the energy interval E_{\gamma}=0.1-1 GeV, for ~73±\pm15% at E_{\gamma}=1-10 GeV, and for ~60±\pm20% at E_{\gamma}>10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative gamma-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p=2.2-2.3, and taking into account internal absorption of gamma-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.Comment: 12 pages, 8 figures, accepted for publication in A&

    Neutrino and astroparticle physics

    Get PDF
    We report on the neutrinos and astroparticle session of this workshop and discuss the present status and future perspectives of this research field
    • …
    corecore