145 research outputs found

    The oxidative damage to the human telomere: effects of 5-hydroxymethyl-2'-deoxyuridine on telomeric G-quadruplex structures

    Get PDF
    As part of the genome, human telomeric regions can be damaged by the chemically reactive molecules responsible for oxidative DNA damage. Considering that G-quadruplex structures have been proven to occur in human telomere regions, several studies have been devoted to investigating the effect of oxidation products on the properties of these structures. However only investigations concerning the presence in G-quadruplexes of the main oxidation products of deoxyguanosine and deoxyadenosine have appeared in the literature. Here, we investigated the effects of 5-hydroxymethyl-2’-deoxyuridine (5-hmdU), one of the main oxidation products of T, on the physical–chemical properties of the G-quadruplex structures formed by two human telomeric sequences. Collected calorimetric, circular dichroism and electrophoretic data suggest that, in contrast to most of the results on other damage, the replacement of a T with a 5-hmdU results in only negligible effects on structural stability. Reported results and other data from literature suggest a possible protecting effect of the loop residues on the other parts of the G-quadruplexes

    Towards the Use of Big Data in Healthcare: a literature review

    Get PDF
    The interest in new and more advanced technological solutions is paving the way for the diffusion of innovative and revolutionary applications in healthcare organizations. The application of an artificial intelligence system to medical research has the potential to move toward highly advanced e-Health. This analysis aims to explore the main areas of application of big data in healthcare, as well as the restructuring of the technological infrastructure and the integration of traditional data analytical tools and techniques with an elaborate computational technology that is able to enhance and extract useful information for decision-making. We conducted a literature review using the Scopus database over the period 2010-2020. The article selection process involved five steps: the planning and identification of studies, the evaluation of articles, the extraction of results, the summary, and the dissemination of the audit results. We included 93 documents. Our results suggest that effective and patient-centered care cannot disregard the acquisition, management, and analysis of a huge volume and variety of health data. In this way, an immediate and more effective diagnosis could be possible while maximizing healthcare resources. Deriving the benefits associated with digitization and technological innovation, however, requires the restructuring of traditional operational and strategic processes, and the acquisition of new skills

    Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes

    Get PDF
    Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG3T) and its modified analogs containing a 50-50 or 30-30 inversion of polarity sites, namely d(30TG50-50G2T30), d(30T50- 50G3T30) and d(50TG30-30G2T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 50-30 backbone. Exchange of 15NH+ 4 ions between G-quadruplex and bulk solution is faster at the 30-end in comparison to the 50-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG3T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures

    Improved performances of catalytic G-quadruplexes (G4-DNAzymes) via the chemical modifications of the DNA backbone to provide Gquadruplexes with double 3′-external G-quartets

    Get PDF
    Here we report on the design of a new catalytic G-quadruplex-DNA system (G4-DNAzyme) based on the modification of the DNA scaffold to provide the DNA pre-catalyst with two identical 3′-ends, known to bemore catalytically proficient than the 5′-ends. To this end, we introduced a 5′-5′ inversion of polarity site in the middle of the G4-forming sequences AG4A andAG6A to obtain d(3′AGG5′-5′GGA3′) (orAG2-G2A) and d(3′AGGG5′-5′GGGA3′) (or AG3-G3A) that fold into stable G4 whose tetramolecular nature was confirmed via nuclear magnetic resonance (NMR) and circular dichroism(CD) investigations. Both AG2-G2AandAG3-G3A display two identical external G-quartets (3′-ends) known to interact with the cofactor hemin with a high efficiency, making the resulting complex competent to performhemoprotein-like catalysis (G4-DNAzyme). A systematic comparison of the performances of modified and unmodified G4s lends credence to the relevance of the modification exploited here (5′-5′ inversion of polarity site), which represents a new chemical opportunity to improve the overall activity of catalytic G4s

    Exploring the binding of d(GGGT)4 to the HIV-1 integrase: An approach to investigate G-quadruplex aptamer/target protein interactions.

    Get PDF
    The aptamer d(GGGT)4 (T30923 or T30695) forms a 5'-5' dimer of two stacked parallel G-quadruplexes, each characterized by three G-tetrads and three single-thymidine reversed-chain loops. This aptamer has been reported to exhibit anti-HIV activity by targeting the HIV integrase, a viral enzyme responsible for the integration of viral DNA into the host-cell genome. However, information concerning the aptamer/ target interaction is still rather limited. In this communication we report microscale thermophoresis investigations on the interaction between the HIV-1 integrase and d(GGGT)4 aptamer analogues containing abasic sites singly replacing thymidines in the original sequence. This approach has allowed the identification of which part of the aptamer G-quadruplex structure is mainly involved in the interaction with the protei

    Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality

    Get PDF
    In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3- 3 and two 5-5 inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T andmTG4T with sequence 3-TGnT-5-5-TGnT-3-3-TGnT-5-5-TGnT-3 in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4 T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T andmTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity

    Structural and Biological Features of G-Quadruplex Aptamers as Promising Inhibitors of the STAT3 Signaling Pathway

    Get PDF
    : In this paper, we investigate the structural and biological features of G-quadruplex (G4) aptamers as promising antiproliferative compounds affecting the STAT3 signalling pathway. Targeting the STAT3 protein through high-affinity ligands to reduce its levels or activity in cancer has noteworthy therapeutic potential. T40214 (STAT) [(G3C)4] is a G4 aptamer that can influence STAT3 biological outcomes in an efficient manner in several cancer cells. To explore the effects of an extra cytidine in second position and/or of single site-specific replacements of loop residues in generating aptamers that can affect the STAT3 biochemical pathway, a series of STAT and STATB [GCG2(CG3)3C] analogues containing a thymidine residue instead of cytidines was prepared. NMR, CD, UV, and PAGE data suggested that all derivatives adopt dimeric G4 structures like that of unmodified T40214 endowed with higher thermal stability, keeping the resistance in biological environments substantially unchanged, as shown by the nuclease stability assay. The antiproliferative activity of these ODNs was tested on both human prostate (DU145) and breast (MDA-MB-231) cancer cells. All derivatives showed similar antiproliferative activities on both cell lines, revealing a marked inhibition of proliferation, particularly at 72 h at 30 µM. Transcriptomic analysis aimed to evaluate STAT's and STATB's influence on the expression of many genes in MDA-MB-231 cells, suggested their potential involvement in STAT3 pathway modulation, and thus their interference in different biological processes. These data provide new tools to affect an interesting biochemical pathway and to develop novel anticancer and anti-inflammatory drugs

    The ST2/IL-33 Pathway in Adult and Paediatric Heart Disease and Transplantation

    Get PDF
    ST2 is a member of interleukin 1 receptor family with soluble sST2 and transmembrane ST2L isoforms. The ligand of ST2 is IL-33, which determines the activation of numerous intracytoplasmic mediators following the binding with ST2L and IL-1RAcP, leading to nuclear signal and cardiovascular effect. Differently, sST2 is released in the blood and works as a decoy receptor, binding IL-33 and blocking IL-33/ST2L interaction. sST2 is mainly involved in maintaining homeostasis and/or alterations of different tissues, as counterbalance/activation of IL-33/ST2L axis is typically involved in the development of fibrosis, tissue damage, inflammation and remodeling. sST2 has been described in different clinical reports as a fundamental prognostic marker in patients with cardiovascular disease, as well as marker for the treatment monitoring of patients with heart failure; however, further studies are needed to better elucidate its role. In this review we reported the current knowledge about its role in coronary artery disease, heart failure, heart transplantation, heart valve disease, pulmonary arterial hypertension, and cardiovascular interventions

    Exploring New Potential Anticancer Activities of the G-Quadruplexes Formed by [(GTG2T(G3T)3] and Its Derivatives with an Abasic Site Replacing Single Thymidine

    Get PDF
    In this paper, we report our investigations on five T30175 analogues, prepared by replacing sequence thymidines with abasic sites (S) one at a time, in comparison to their natural counterpart in order to evaluate their antiproliferative potential and the involvement of the residues not belonging to the central core of stacked guanosines in biological activity. The collected NMR (Nuclear Magnetic Resonance), CD (Circular Dichroism), and PAGE (Polyacrylamide Gel Electrophoresis) data strongly suggest that all of them adopt G-quadruplex (G4) structures strictly similar to that of the parent aptamer with the ability to fold into a dimeric structure composed of two identical G-quadruplexes, each characterized by parallel strands, three all-anti-G-tetrads and four one-thymidine loops (one bulge and three propeller loops). Furthermore, their antiproliferative (MTT assay) and anti-motility (wound healing assay) properties against lung and colorectal cancer cells were tested. Although all of the oligodeoxynucleotides (ODNs) investigated here exhibited anti-proliferative activity, the unmodified T30175 aptamer showed the greatest effect on cell growth, suggesting that both its characteristic folding in dimeric form and its presence in the sequence of all thymidines are crucial elements for antiproliferative activity. This straightforward approach is suitable for understanding the critical requirements of the G-quadruplex structures that affect antiproliferative potential and suggests its application as a starting point to facilitate the reasonable development of G-quadruplexes with improved anticancer properties

    Ten-Year Experience with Endomyocardial Biopsy after Orthotopic Heart Transplantation: Comparison between Trans-Jugular and Trans-Femoral Approach

    Get PDF
    Background: Endomyocardial biopsy (EMB) is considered the gold standard for monitoring allograft rejection after heart transplantation. EMB is an invasive procedure that may be performed via a trans-jugular or a trans-femoral approach with a complication rate reported as less than 6%. The aim of this study was to evaluate the complication rate after EMBs in heart recipients and to compare the results of EMBs performed via a trans-jugular or a trans-femoral approach. Methods: Medical records of heart recipients undergoing EMBs between January 2012 and December 2022 were retrospectively reviewed. EMB-related complications were classified as major (death, pericardial effusion, hemopericardium, cardiac tamponade requiring a pericardiocentesis or an urgent cardiac surgery, ventricular arrythmias, permanent atrio-ventricular block requiring permanent pacing, hemothorax, pneumothorax and retroperitoneal bleeding) and minor (de novo tricuspid regurgitation, arrhythmias, coronary artery fistula, vascular access site complications). Results: A total of 1698 EMBs were performed during the study period at our institution in 212 heart recipients. There were 927 (55%) EMBs performed through a trans-jugular approach (TJ group) and 771 (45%) EMBs performed through a trans-femoral approach (TF group). A total of 60 (3.5%) complications were recorded, including nine (0.5%) major complications (six cardiac tamponades, two pneumothorax and one retroperitoneal bleeding) and 51 (3%) minor complications (seven coronary fistulae, five de novo tricuspid regurgitation, four supraventricular arrythmias and thirty-five vascular access site complications). No difference was found in total (38 [4%] vs. 22 [3%]; p = 0.16) and major (6 [1%} vs. 3 [0.4%]; p = 0.65) complications (32 [3%] vs. 19 [2%]; p = 0.23) between the TJ group and the TF group. No difference was found in male sex, age at time of EMB and time from HT between complicated and not complicated EMBs. Conclusions: EMBs represent a safe procedure with a low risk of complications. In our experience, EMBs performed via a trans-jugular approach are as safe as the trans-femoral approach
    corecore