2 research outputs found
A Methodological Approach to Assessing the Tribological Properties of Lubricants Using a Four-Ball Tribometer
Based on the analysis of standards for the testing of lubricants, both liquid and plastic, on a four-ball tribometer, and the analysis of the parameters by which lubricants are evaluated, this paper proposes a methodology and an integral parameter for the estimation of tribological properties. The methodological approach proposed in this paper allows for the integration of a variety of parameters provided in the standards for the testing of lubricants into one indicator. Herein, we show that the developed technique is based on the energy approach and takes into account the specific wear work of the test material (steel balls) in the lubricating medium to be investigated. The results of laboratory tests of a wide range of lubricants are presented: hydraulic fluids, motor and transmission oils of various purposes and classifications. It is shown that the magnitude of the integral parameter can be used to assess the effectiveness of anti-wear and anti-scuff additives in base lubricants, as well as the ranges of their applications. This allows for differentiation and quantitative evaluation of the effectiveness of such additives. The obtained results allow us to state that all tests according to the developed method are reproducible and homogeneous, which is confirmed using the Cochran criterion. The coefficient of variation during testing does not exceed 18%. We show that the presented methodology and the integral parameter can be used in the first stage of the laboratory selection tests of new lubricants and additives of various origins, reducing the costs of their development and implementation
Methodological Approach in the Simulation of the Robustness Boundaries of Tribosystems under the Conditions of Boundary Lubrication
In the presented work, a methodical approach was developed for determining rational operation modes of tribosystems, taking into account their design. This approach makes it possible in the designing stage, according to the predicted operating modes, to calculate the limits and margins of stable work in operation. The definition of the robustness of the tribosystem and the criteria for assessing the robustness are formulated based on the theory of stability of technical systems. It is shown that such a methodical approach allows for determining the modes of the rational operation of the designed structures without damaging the friction surfaces. Experimental studies have proven that not all designs of tribosystems lose stability due to the appearance of friction surface burrs. There are designs where the loss of stability occurs upon the appearance of accelerated wear. The developed criteria take into account two options for the loss of stability. An experimental verification of the modes of loss of stability of tribosystems was performed by the appearance of a burr or the beginning of accelerated wear with the calculated values of the robustness criteria. The obtained results allow us to conclude that the modeling error is within 8.3–18.7%, which is a satisfactory result in the study of friction and wear processes. Robustness criteria is based on the coefficient of friction RRf and wear rate RRI, and must be used when designing new constructions of tribosystems. Theoretical calculations of such criteria and the dependence of their change on changing the predicted operating modes will allow for justifying rational operating modes within their stability