5,569 research outputs found

    Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars

    Get PDF
    The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of ~1 m with respect to the planet's center of mass. The current global topographic grid has a resolution of 1/64° in latitude × 1/32° in longitude (1 × 2 km^2 at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-μm reflectivity with an accuracy of 5% have also been obtained

    Integration of Ferroelectric HfO2 onto a III-V Nanowire Platform

    Get PDF
    The discovery of ferroelectricity in CMOS-compatible oxides, such as doped hafnium oxide, has opened new possibilities for electronics by reviving the use of ferroelectric implementations on modern technology platforms. This thesis presents the ground-up integration of ferroelectric HfO2 on a thermally sensitive III-V nanowire platform leading to the successful implementation of ferroelectric transistors (FeFETs), tunnel junctions (FTJs), and varactors for mm-wave applications. As ferroelectric HfO2 on III-V semiconductors is a nascent technology, a special emphasis is put on the fundamental integration issues and the various engineering challenges facing the technology.The fabrication of metal-oxide-semiconductor (MOS) capacitors is treated as well as the measurement methods developed to investigate the interfacial quality to the narrow bandgap III-V materials using both electrical and operando synchrotron light source techniques. After optimizing both the films and the top electrode, the gate stack is integrated onto vertical InAs nanowires on Si in order to successfully implement FeFETs. Their performance and reliability can be explained from the deeper physical understanding obtained from the capacitor structures.By introducing an InAs/(In)GaAsSb/GaSb heterostructure in the nanowire, a ferroelectric tunnel field effect transistor (ferro-TFET) is fabricated. Based on the ultra-short effective channel created by the band-to-band tunneling process, the localized potential variations induced by single ultra-scaled ferroelectric domains and individual defects are sensed and investigated. By intentionally introducing a gate-source overlap in the ferro-TFET, a non-volatile reconfigurable single-transistor solution for modulating an input signal with diverse modes including signal transmission, phase shift, frequency doubling, and mixing is implemented.Finally, by fabricating scaled ferroelectric MOS capacitors in the front-end with a dedicated and adopted RF and mm-wave backend-of-line (BEOL) implementation, the ferroelectric behavior is captured at RF and mm-wave frequencies

    Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst TiO2

    Get PDF
    In this work, degradation of the anthraquinonic dye Acid Blue 25 by non-thermal plasma at atmospheric pressure with and without photocatalyst is investigated. Titanium dioxide (TiO2) is used as a photocatalyst. The dye degradation by plasma in the presence of TiO2 is investigated as a function of TiO2 concentration, dye concentration and pH. The degradation rate is higher in acidic solutions with pH of 2 to 4.3, especially at pH 2, and decreases to 0.38 mg L-1 min(-1) with the increase of pH from 2 to 5.65. A similar effect is observed in basic media, where a higher degradation rate is found at pH = 10.3. The degradation rate increases in the presence of TiO2 compared to the discharge without photocatalysis. The results show that the degradation of the dye increases in the presence of TiO2 until the catalyst load reaches 0.5 g L-1 after which the suppression of AB25 degradation is observed. The results indicate that the tested advanced oxidation processes are very effective for the degradation of AB25 in aqueous solutions

    Audio-tactile stimuli to improve health and well-being : a preliminary position paper

    Get PDF
    From literature and through common experience it is known that stimulation of the tactile (touch) sense or auditory (hearing) sense can be used to improve people's health and well-being. For example, to make people relax, feel better, sleep better or feel comforted. In this position paper we propose the concept of combined auditory-tactile stimulation and argue that it potentially has positive effects on human health and well-being through influencing a user's body and mental state. Such effects have, to date, not yet been fully explored in scientific research. The current relevant state of the art is briefly addressed and its limitations are indicated. Based on this, a vision is presented of how auditory-tactile stimulation could be used in healthcare and various other application domains. Three interesting research challenges in this field are identified: 1) identifying relevant mechanisms of human perception of combined auditory-tactile stimuli; 2) finding methods for automatic conversions between audio and tactile content; 3) using measurement and analysis of human bio-signals and behavior to adapt the stimulation in an optimal way to the user. Ideas and possible routes to address these challenges are presented
    • …
    corecore