9 research outputs found

    Use of MALDI-TOF MS to Discriminate between Aflatoxin B1-Producing and Non-Producing Strains of <i>Aspergillus flavus</i>

    No full text
    Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. One of the producers of AFB1 is Aspergillus flavus. Therefore, its rapid identification plays a key role in various sectors of the food and feed industry. MALDI-TOF mass spectrometry is one of the fastest and most accurate methods today. Therefore, the aim of this research was to develop the rapid identification of producing and non-producing strains of A. flavus based on the entire mass spectrum. To accomplish the main goal a different confirmatory MALDI-TOF MS and TLC procedures such as direct AFB1 identification by scraping from TLC plates, A. flavus mycelium, nutrient media around A. flavus growth, and finally direct AFB1 identification from infected wheat and barley grains had to be conducted. In this experiment, MALDI-TOF mass spectrometry with various modifications was the main supporting technology. All confirmatory methods confirmed the presence of AFB1 in the samples of aflatoxin-producing strains of A. flavus and vice versa; AFB1 was not detected in the case of non-producing strains. Entire mass spectra (from 2 to 20 kDa) of aflatoxin-producing and non-producing A. flavus strains were collected, statistically analyzed and clustered. An in-depth analysis of the obtained entire mass spectra showed differences between AFB1-producing and non-producing strains of A. flavus. Statistical and cluster analysis divided AFB1-producing and non-producing strains of A. flavus into two monasteries. The results indicate that it is possible to distinguish between AFB1 producers and non-producers by comparing the entire mass spectra using MALDI-TOF MS. Finally, we demonstrated that if there are established local AFB1-producing and non-producing strains of A. flavus, the entire mass spectrum database identification of aflatoxigenic A. flavus strains can be even faster and cheaper, without the need to identify the toxin itself

    The Effect of Humic Substances on the Meat Quality in the Fattening of Farm Pheasants (<i>Phasianus colchicus</i>)

    No full text
    Background: The effects of humic substances (HSs) on the carcass characteristics and meat quality traits of breast and thigh muscles were studied. Methods: In total, 200 pheasants were allocated to 4 treatments, each containing 50 birds. The control birds were fed a diet without additives (0% HS); the other treatment birds were fed diets containing HSs at 0.5, 0.75 and 1.0% from 1 to 90 days of age. At the end of the experiment, several carcass characteristics were measured and breast and thigh muscle samples were taken to determine the composition of several nutrients by standard laboratory methods and procedures. Results: The carcass weights of both males and females increased significantly (p p p < 0.05), the highest carcass yield in males and females was found in the 0.50 HS group. Conclusions: Feeding with a diet containing HSs can have a beneficial influence on the carcass parameters, decrease the crude fat content in the meat and change the profile of bioactive fatty acids in the breast and thigh muscles of broiler pheasants

    Exceptional Properties of Lepidium sativum L. Extract and Its Impact on Cell Viability, Ros Production, Steroidogenesis, and Intracellular Communication in Mice Leydig Cells In Vitro

    No full text
    The prevalence of reproductive dysfunction in males has risen in the last few years, and alternative therapies are gradually gaining in popularity. Our in vitro study aimed to evaluate the potential impact of Lepidium sativum L. on mice TM3 Leydig cells, concerning basal parameters such as cell viability, cell membrane integrity, and lysosomal activity, after 24 h and 48 h exposure. Moreover, reactive oxygens species generation, sex-steroid hormone secretion, and intercellular communication were quantified. In the present study, the microgreen extract from Lepidium was rich in ferulic acid, 4-OH benzoic acid, and resveratrol, with a significant antioxidant activity. The results showed that lower experimental doses (62.5&ndash;250 &micro;g/mL) could positively affect the observed parameters, with significant differences at 250 &micro;g/mL after 24 h and 48 h, respectively. Potential risks could be associated with higher concentrations, starting at 500 &micro;g/mL, 1000 &micro;g/mL, and 2000 &micro;g/mL of Lepidium. Nevertheless, biochemical quantification indicated a significant antioxidant potential and a rich content of biologically active molecules at the applied doses, and time determined the intracellular response of the cultured model

    Assessment of rabbit spermatozoa characteristics after amygdalin and apricot seeds exposure in vivo

    No full text
    This study evaluates rabbit spermatozoa motility parameters after in vivo administration of amygdalin and apricot seeds during a 28-day period. Apricot seeds are potentially useful in human nutrition and amygdalin is the major cyanogenic glycoside present therein. The rabbits were randomly divided into the five groups (Ctrl-Control, P1, P2, P3, P4) with 4 males in each group. Control group received no amygdalin/apricot seeds while the experimental groups P1 and P2 received a daily intramuscular injection of amygdalin at a dose 0.6 and 3.0 mg/kg b.w. respectively during 28 days. P3 and P4 received a daily dose 60 and 300 mg/kg b.w. of crushed apricot seeds mixed with feed during 28 days, respectively. CASA system was used to evaluate for motility, progressive motility, curvilinear velocity, amplitude of lateral head displacement and beat cross frequency. Intramuscular application of amygdalin resulted in a significant time- and dose-dependent decrease of spermatozoa motility as well as progressive motility. On the other hand, oral consumption of apricot seeds had no significant effect either on the rabbit spermatozoa motility or progressive motility over the entire course of the study. The analysis of the other motion characteristics revealed a similar trend depicting a continuous, time- and dose-dependent decrease of all parameters following intramuscular AMG administration, with significant differences particularly for the dose 3.0 mg AMG/kg b.w. On the other hand, oral administration of apricot seeds had no significant impact on spermatozoa motility parameters. The present study suggests that short-term intramuscular application of amygdalin decreased rabbit spermatozoa motility in vivo. Whereas, consumption of apricot seeds did not induce any change in rabbit spermatozoa in vivo. Our findings suggest dose-dependent negative effect of pure amygdalin, but not apricot seeds on the rabbit spermatozoa parameters. Keywords: Amygdalin, Apricot seeds, Spermatozoa, Rabbi
    corecore