48 research outputs found

    Platelet proteomic profiling in sitosterolemia suggests thrombocytopenia is driven by lipid disorder and not platelet aberrations

    Get PDF
    Sitosterolemia is a rare autosomal recessive genetic disorder in which patients develop hypercholesterolemia and may exhibit abnormal hematologic and/or liver test results. In this disease, dysfunction of either ABCG5 or ABCG8 results in the intestinal hyperabsorption of all sterols, including cholesterol and, more specifically, plant sterols or xenosterols, as well as in the impaired ability to excrete xenosterols into the bile. It remains unknown how and why some patients develop hematologic abnormalities. Only a few unrelated patients with hematologic abnormalities at the time of diagnosis have been reported. Here, we report on 2 unrelated pedigrees who were believed to have chronic immune thrombocytopenia as their most prominent feature. Both consanguineous families showed recessive gene variants in ABCG5, which were associated with the disease by in silico protein structure analysis and clinical segregation. Hepatosplenomegaly was absent. Thrombopoietin levels and megakaryocyte numbers in the bone marrow were normal. Metabolic analysis confirmed the presence of strongly elevated plasma levels of xenosterols. Potential platelet proteomic aberrations were longitudinally assessed following dietary restrictions combined with administration of the sterol absorption inhibitor ezetimibe. No significant effects on platelet protein content before and after the onset of treatment were demonstrated. Although we cannot exclude that lipotoxicity has a direct and platelet-specific impact in patients with sitosterolemia, our data suggest that thrombocytopenia is neither caused by a lack of megakaryocytes nor driven by proteomic aberrations in the platelets themselves

    Severe congenital neutropenia in a multigenerational family with a novel neutrophil elastase (ELANE) mutation

    Get PDF
    We have analysed a family with nine congenital neutropenia patients in four generations, several of which we have studied in a long-term follow-up of over 25 years. The patients were mild to severe neutropenic and suffered from various recurrent bacterial infections. Mutations in the genes ELANE, CSF3R and GFI1 have been reported in patients with autosomal dominant congenital neutropenias. Using a small-scale linkage analysis with markers around the ELANE, CSF3R, CSF3 and GFI1 genes, we were able to determine that the disease segregated with markers around the ELANE gene. We identified a novel mutation in the ELANE gene in all of the affected family members that was not present in any of the healthy family members. The mutation leads to an A28S missense mutation in the mature protein. None of these patients developed leukaemia. This is the first truly multigenerational family with mutations in ELANE as unambiguous cause of severe congenital neutropenia SCN

    Hematologic abnormalities in Shwachman Diamond syndrome: lack of genotype-phenotype relationship

    Get PDF
    Shwachman-Diamond syndrome (SIDS) is an autosomal-recessive disorder characterized by short stature, exocrine pancreatic insufficiency, and hematologic defects. The causative SBDS gene was sequenced in 20 of 23 unrelated patients with clinical SIDS. Mutations in the SBDS gene were found in 75 %, being identical in 11 patients. Hematologic parameters for all 3 lineages were determined over time such as absolute neutrophil counts (ANCs), granulocyte functions, and erythroid and myeloid colony formation (erythroid burst-forming unit [BFU-E] and granulocyte-monocyte colony-forming unit [CFU-GM]) from hematopoietic progenitor cells, percentage of fetal hemoglobin (HbF), and platelet counts. Persistent neutropenia was present in 43 % in the absence of apoptosis and unrelated to chemotaxis defects (in 65 %) or infection rate. Irrespective of the ANC in vivo, abnormal CFU-GM was observed in all patients with SIDS tested (14 of 14), whereas BFU-E was less often affected (9 of 14). Cytogenetic aberrations occurred in 5 of 19 patients in the absence of myelodysplasia. One child died during allogeneic bone marrow transplantation. In conclusion, neutropenia and defective chemotaxis did not result in severe clinical infection in SDS. CFU-GMs were impaired in all patients tested. From the SBDS sequence data, we conclude that in patients with genetically proven SDS a genotype-phenotype relationship in SDS does not exist in clinical and hematologic term

    Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements

    No full text
    Neutrophils are important effector cells in the host defense against invading microorganisms. One of the mechanisms they use to eliminate pathogens is the release of neutrophil extracellular traps (NETs). Although NET release and subsequent cell death known as NETosis have been intensively studied, the cellular components and factors determining or facilitating the formation of NETs remain incompletely understood. Using various actin polymerization and myosin II modulators on neutrophils from healthy individuals, we show that intact F-actin dynamics and myosin II function are essential for NET formation when induced by different stimuli; that is, phorbol 12-myristate 13-acetate, monosodium urate crystals, and Candida albicans. The role of actin polymerization in NET formation could not be explained by the lack of reactive oxygen species production or granule release, which were normal or enhanced under the given conditions. Neutrophils from patients with very rare inherited actin polymerization defects by either actin-related protein 2/3 complex subunit 1B or megakaryoblastic leukemia 1 deficiency also failed to show NETosis. We found that upon inhibition of actin dynamics, there is a lack of translocation of neutrophil elastase to the nucleus, which may explain the impaired NET formation. Collectively, our data show the essential requirement of an intact and active actin polymerization process, as well as active myosin II to enable the release of nuclear DNA by neutrophils during NET formation

    Toll-like receptor-induced reactivity and strongly potentiated IL-8 production in granulocytes mobilized for transfusion purposes

    No full text
    Transfusion of granulocytes from granulocyte-colony stimulating factor (G-CSF)/dexamethasone (dexa)-treated donors can be beneficial for neutropenic recipients that are refractory to antimicrobial therapy. G-CSF/dexa treatment not only increases the number of circulating neutrophils but also affects their gene expression. Because of the intended transfusion of these granulocytes into patients who are severely ill, it is of importance to establish to what extent mobilization affects the cellular behavior of neutrophils. Here, we studied the effects of mobilization on Toll-like receptor (TLR)-mediated responses. Mobilized granulocytes displayed increased gene and protein expression of TLR2, TLR4, TLR5, and TLR8. Although mobilized granulocytes displayed normal priming of nicotinamide adenine dinucleotide phosphate oxidase activity and a slight increase in adhesion in response to TLR stimulation, these cells produced massive amounts of interleukin-8 (IL-8), in particular to TLR2 and TLR8 stimulation. The increase in IL-8 release occurred despite reduced IL-8 mRNA levels in the donor granulocytes after in vivo G-CSF/dexa treatment, indicating that the enhanced TLR-induced IL-8 production was largely determined by posttranscriptional regulation. In summary, granulocytes mobilized for transfusion purposes show enhanced TLR responsiveness in cytokine production, which is anticipated to be beneficial for the function of these cells on transfusion into patients

    Growth factors G-CSF and GM-CSF differentially preserve chemotaxis of neutrophils aging in vitro

    No full text
    OBJECTIVE: The ability of human neutrophils to migrate was studied during culture in vitro. METHODS: Neutrophils were isolated from human blood and cultured at 37 degrees C. Apoptosis was determined by Annexin-V fluorescein isothiocyanate binding. Receptor expression was measured by fluorescence in situ hybridization analysis with monoclonal antibodies. Migration was assessed with Transwell Fluoroblock inserts and calcein-stained neutrophils. Extracellular signal-regulated kinase 1/2 (ERK-1/2) activation was determined with monoclonal antibody against phosphorylated ERK-1/2. RESULTS: Upon culture, untreated neutrophils downregulated the chemotaxin receptors FPR, CXC chemokine receptor 1, and CXC chemokine receptor 2 and lost the ability to migrate to formyl-methionyl-leucyl-phenylalanin, interleukin 8 (IL-8), and C5a. In contrast, expression of CXCR4 was induced; this receptor was able to signal (increase in intracellular free calcium ions [Ca(2+)](i), ERK-1/2 activation) but was nonfunctional (no chemotaxis to stromal cell-derived factor-1alpha). The myeloid growth factors granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) retarded the process of functional decay during cell culture. However, while preserving chemotaxis of neutrophils toward formyl-methionyl-leucyl-phenylalanin or C5a, GM-CSF-in contrast to G-CSF-did not preserve chemotaxis toward IL-8, with a corresponding downregulation of the IL-8 receptors. The decay in neutrophil chemotaxis occurred prior to detectable phosphatidylserine (PS)-exposure. In contrast, the induction of [Ca(2+)](i) rises and ERK-1/2 activation correlated with chemotaxin receptor expression unless the cells were truly apoptotic. CONCLUSION: Neutrophils aging in vitro lose their chemotactic capacity. Functional decay starts prior to PS exposure and can be partially prevented by G-CSF and GM-CSF, in a differential fashion. These growth factors act by increasing the number of viable neutrophils, by altering the levels of chemotaxin receptor expression, and-independently-by affecting signaling cascade

    Apoptotic neutrophils in the circulation of patients with glycogen storage disease type 1b (GSD1b)

    No full text
    Glycogen storage disease type 1b (GSD1b) is a rare autosomal recessive disorder characterized by hypoglycemia, hepatomegaly, and growth retardation, and associated-for unknown reasons-with neutropenia and neutrophil dysfunction. In 5 GSD1b patients in whom nicotinamide adenine dinucleotide phosphate-oxidase activity and chemotaxis were defective, we found that the majority of circulating granulocytes bound Annexin-V. The neutrophils showed signs of apoptosis with increased caspase activity, condensed nuclei, and perinuclear clustering of mitochondria to which the proapoptotic Bcl-2 member Bax had translocated already. Granulocyte colony-stimulating factor (G-CSF) addition to in vitro cultures did not rescue the GSD1b neutrophils from apoptosis as occurs with G-CSF-treated control neutrophils. Moreover, the 2 GSD1b patients on G-CSF treatment did not show significantly lower levels of apoptotic neutrophils in the bloodstream. Current understanding of neutrophil apoptosis and the accompanying functional demise suggests that GSD1b granulocytes are dysfunctional because they are apoptotic. (C) 2003 by The American Society of Hematolog
    corecore