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CAPSULE SUMMARY: 

In a boy born of consanguineous parents, pulmonary infections, vasculitis-like episodes and 

generalized eczema were noted. The persistent leukocytosis and mild bleeding tendency was 

accompanied by an actin polymerization defect in his blood cells. Proteomics analysis revealed 

absence of the Arp2/3 complex component ARPC1B, caused by a homozygous indel mutation in the 

ARPC1B gene (c.491_495TCAAGdelCCTGCCCins). Arpc1b knock-out mice demonstrated clinical 

similarities with the patient. Together, these findings  describe a novel combined immunodeficiency 

with recurrent infections, allergy and inflammation as the main clinical features of the ARPC1B gene 

defect. 
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To the Editor, 

 

One of the major protein complexes in actin polymerization and cellular motility is the Arp2/3 

complex, consisting of seven polypeptides1. Two of the subunits are actin-related proteins of the 

Arp2 and Arp3 subfamilies. The remaining five regulatory subunits are referred to as ARPC1 (actin-

related protein complex-1), ARPC2, ARPC3, ARPC4 and ARPC5. ARPC1 is present in two isoforms in 

humans, ARPC1A and 1B as a WD40 repeat-containing protein, encoded by different genes, whereas 

the other ARPC subunits do not contain common sequence motifs. Arp2/3 gene deletions result in 

embryonic lethality in the mouse2. The genetic defects in the regulatory proteins for cytoskeletal 

rearrangements cause different syndromes, mostly dominated by blood and immune phenotypes3. 

The activities of nucleation-promoting factors for actin polymerization are mostly regulated by signal-

transduction pathways, one of which involves the activation by the Rho-family GTPases CDC42 and 

RAC2, and the Wiskott-Aldrich Syndrome Protein (WASP) family as the intermediary Arp2/3 activator 

that can control actin assembly downstream of these small GTPases4,5.  

 

Here we describe the first human genetic defect in a component of the Arp2/3 complex itself. The 

ARPC1B  mutation results in a combined immunodeficiency with symptoms of immune dysregulation 

and a mild bleeding tendency, caused by defective actin polymerization in the immune cells, in a 7-

year old male patient born as the first child of consanguineous, healthy Moroccan parents. He has 

one younger unaffected brother.  The first weeks of his postnatal development were uneventful, and 

his umbilical cord detached spontaneously. At 2 months of age he was admitted because of gastric 

bleeding during a febrile period of clinical gastroenteritis. A gastroscopy showed profuse bleeding in 

the presence of normal coagulation and liver function tests in the presence of a striking leukocytosis 

(between 25.2-55.8x106/ml), a normochromic anemia and a mild thrombocytopenia. The white 

blood cell (WBC) count slowly improved spontaneously during further follow-up, whereas the 

thrombocytopenia persisted (Online Repository Table 1). The mean platelet volume (MPV) was 

repeatedly found to be normal (mean of 8.8 fL, n=9 samples; normal range 7.4-11.7 fL). 

His second admission was due to an auricular infection (perichondritis by S. aureus), which was 

treated appropriately, but resulted in scarring of his right pinnacle (Fig.1A). At the age of 5 months, 

he presented again with a clinical picture of fever and purpuric lesions on his legs, arms (Fig.1B/C), 

and scrotum, and poor wound healing (data not shown). Skin biopsy showed a clear leukocytoclastic 

vasculitis with multiple microthrombi in the vascular lesions (Fig.1D). We measured autoantibodies 

against nuclear antigens (ANA, ENA), neutrophil cytoplasmic proteins (ANCA-IFT, MPO and PR3), 

platelet antigens, and lupus anti-coagulans (LAC), and found all tests to be negative (data not shown). 

He suffered from two similar episodes of vasculitis in the presence of a high number of eosinophils 
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(peaking at 3350 cells/μl at 25 months of age during an infection) that were treated with 

corticosteroids for 3 months each. His eosinophil counts remained within the normal range 

thereafter (Online Repository Table 1). 

At the age of 4 years, he suffered from a period of prolonged bloody diarrhea from which Salmonella 

typhimurium was cultured due to a serious pan-colitis with neutrophil and eosinophil infiltration in 

the biopsies of his colon (Fig.1E). Recurrent pneumonias that responded to antibiotics have led to 

mild bronchiectasis. Apart from infections he developed serious eczema and showed anaphylaxis 

after ingestion of nuts. The immunoglobulin spectrum shows increased IgA and IgE (Online 

Repository Table 1).  

Because of the early leukocytosis and initial bleeding tendency, we excluded leukocyte adhesion 

defects, including LAD-III6. The most eminent in-vitro findings consisted of the neutrophil defect in 

motility and directed movement (chemotaxis) due to an F-actin polymerization defect (Fig.1F/G); a 

result supported by confocal analysis (Online Repository Fig.1A), adhesion was unimpaired (data not 

shown). Enhanced azurophil granule release upon cell activation (Online Repository Fig.2) was noted 

by the release of proteolytic activity and the upregulation of CD63 as an integral membrane marker 

for azurophil granules, but normal activation of NADPH oxidase, phagocytosis and killing of 

Staphylococcus aureus and Escherichia coli (Online Repository Fig.2; data not shown). The initial 

bleeding tendency seemed to be associated with a very mild platelet dysfunction in a double-colored 

aggregation assay designed previously to determine platelet function under conditions of reduced 

platelet counts when standard aggregometry tests fail to be accurate7 (Online Repository Fig.3A). 

Also, detection of GpIIb/IIIa integrin activation and upregulation of CD62P and CD63 from the 

granules were tested and compared with control platelets similarly activated (Online Repository 

Fig.3B). Although spreading of patient platelets was different from control platelets (Online 

repository Fig.1B) and CD62P and CD63 upregulation was slightly reduced, GpIIb/IIIa activation 

seemed intact. Clinically, the bleeding tendency is was not apparent anymore after these initial 

bleeding events during further follow-up in the presence of a mild thrombocytopenia. 

Exome sequencing failed to pick up a mutation (because of the default ‘variant caller’ parameter 

settings in this complex genetic defect), but subsequent proteomics analysis of the platelets and 

neutrophils indicated a complete lack of ARPC1B (Fig.2A-D). ARPC1B is an essential hematopoietic 

component of the Arp2/3 complex for F-actin polymerization. The ARPC1B deficiency was  caused by 

a homozygous complex frameshift mutation in the ARPC1B gene (c.491_495TCAAGdelCCTGCCCins), 

as confirmed by additional targeted sequencing approaches with improved, customized ‘variant 

caller’ parameter settings for the detection of complex mutations (Online Repository Fig.4). The 

complex nature of the mutation in this family might be the consequence of a double strand break 
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(DSB) repaired by nonhomologous end joining (NHEJ), or by a microhomology-mediated end-joining 

mechanism (MMEJ)8,9. Proteomics analysis demonstrated the presence of the Arp2/3 complex in 

normal neutrophils, T cells and platelets to consist of ARPC1B, ARPC2, ARPC3, ARPC4, ARPC5 and 

ARPC5L, but absence of ARPC1A. Since ARPC1B was also expressed in tissue cells, the migration 

defect observed in neutrophils was expected to be present in primary fibroblasts as well. However, 

these cells showed normal migratory behavior and we may conclude that the non-hematopoietic 

expression of ARPC1A is apparently sufficient to rescue the fibroblasts from a detectable defect 

(Online Repository Fig.5). Expression of ARPC1A and ARPC1B were variably present in additional 

non-hematopoietic cell lines (HeLa, SKBR3 and HEK273) indicating redundancy of ARPC1 proteins, 

while only ARPC1B protein was detected in hematopoietic cell lines (Daudi, Ramos, Jurkat, NB4, 

U937), similar to the various findings with fibroblasts versus blood cells tested (data not shown). 

Together, these novel data on ARPC1 protein expression may well explain why this ARPC1B defect 

manifests primarily as an hematological and immunological disease.   

When Arpc1b-/- mice (Arpc1btm1a(EUCOMM)Wtsi) were generated and compared to the patient (Online 

Repository Table 2), no changes in whole blood cell counts were found. While serum total IgG, IgA 

and IgM levels were normal, total IgE level had increased at 16 weeks (0 ± 0 ng/ml in wild-type versus 

220.6 ± 266.9 ng/ml  in Arpc1b-/- mice). In 75% of the Arpc1b-deficient mice mild inflammation of the 

blood vessels was observed, targeting the aorta and/or the mesenteric and pancreatic arteries 

(Fig.2E). Upon challenge with the attenuated S. typhimurium M525 and unlike their wild-type 

equivalents, Arpc1b-/-  mice showed signs of salmonellosis by day 3 post-infection, with 5 out of 8 

mice having to be sacrificed by day 5 (Fig.2F). In contrast, wild-type mice all survived the challenge.   

The fact that ARPC1B is the only ARPC1 isoform in hematopoietic cells, whereas both ARPC1A and 

ARPC1B are present in tissue cells, suggests a differential use of Arp2/3 activities in tissue and blood 

cells. Severe food allergies, eczema, and autoimmunity are also observed in WASP- and WIP-deficient 

patients causing Wiskott-Aldrich(-like) syndrome3,5,10, but this was genetically excluded in our 

patient. These immunodeficiencies tend to have a more severe bleeding tendency and more 

pronounced thrombocytopenia.  

We have identified a novel combined immunodeficiency with features of recurrent infections, 

allergic reactions, vasculitis and mild bleeding tendency. The biology as well as the supportive 

evidence from the mouse model suggests a direct causal relationship between the ARPC1B mutation 

and the clinical manifestations.  
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LEGENDS 

 

Figure 1. Clinical, histological and in-vitro findings in the patient. (A,B,C) remarkable clinical features 

of the affected index case, with skin manifestations appearing superficially, rather similar to vasculitic 

purpura-like lesions with poor wound repair under certain conditions. (D) Skin biopsy showing small-

vessel vasculitis with leukocytoclasia and thrombosis (arrow), and (E) colon biopsy with severe active 

inflammation and crypt abscesses (arrows) (Hematoxylin and Eosin, 200x). (F) Defective chemotaxis 

over 3-µm pore-size filters, and (G) F-actin polymerization in suspension after stimulation with C5a 

and fMLP (mean ± SEM, n=7-9).  

 

Figure 2. ARPC1B deficiency and Arpc1b-knock-out mouse model. (A,B,C) Mass spectrometry 

analysis showing the difference in protein level between the neutrophils of healthy controls and the 

patient (n =3; Volcano plot in C); ARPC1A is absent in proteomics analysis in control platelets and 

neutrophils (data not shown). (D) Absence of ARPC1B was confirmed by WB staining with anti-

ARPC1B antibody of PMN and platelet lysates. Anti-GAPDH antibody was used as loading control 

(n=3). WASP was present by Western blotting (data not shown). (E) Vasculitis and renal 

glomerulonephritis in Arpc1b-/- mice with aortic vasculitis (200x; see arrows left panel), cardiac 

subendocardial vasculitis (200x; middle panel), and proliferative glomerulonephritis (400x; right 

panel).  (F) Kaplan-Meier curve for survival following infection of Arpc1b-/- and wild-type mice with S. 

typhimurium M525.  
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ON-LINE REPOSITORY FIGURES 

 

Supplementary Figure 1: Actin localisation upon neutrophil activation. (A) Polymerized F-actin was 

stained in control and patient PMNs. Polymerized actin staining on glass cover slide (red= actin, 

blue=nucleus). Control cells were activated by fMLP (upper panel) and compared with patient cells 

(lower panel) at the indicated time points. Upon activation with fMLP, the normal lamellipodia are 

not observed with the patient cells and instead the formation of filopodia are the major effect 

induced in the patient cells, which is in line with expected role of a dysfunctional Arp2/3 complex, 

resulting in lack of actin polymerization by branching. (B) Polymerized F-actin was stained in control 

and patient platelets activated by collagen and showed defective spreading behavior siilar to what 

was observed with neutrophils. Representative for 3 independent experiments (see Online Methods) 

 

Supplementary Figure 2: Neutrophil function tests. (A) Protease release of control and patient 

PMNs after stimulation with fMLP, PAF/fMLP, CytoB/fMLP, and TX-100 (maximal slope in RFU/min; 

mean ± SEM, n=3. (B) CD63 expression on control and patient PMNs after stimulation with fMLP, 

PAF/fMLP and CytoB/fMLP (mean of two independent experiments) (C) NADPH-oxidase activity was 

quantified as H2O2 release after stimulation with zymosan, serum-trated zymosan (STZ), PMA or 

PAF/fMLP (nmol H2O2/min/106 PMNs; mean ± SEM, n=4). (D) Killing of S. aureus by control and 

patient PMNs. Killing was quantified by determining CFU after incubation with PMNs at different 

time points, t=0 was defined as 100% (mean ± SEM, n=4). See Online Methods.  

 

Supplementary Figure 3: Mild defect in patient platelet aggregation and activation to multiple 

ligands. (A) Platelet aggregation was determined as double-colored events (see Online Methods). 

PMA (100 ng/ml), TRAP (20 μM) and background levels without stimulation are shown (mean ± SEM, 

n=4; * p<0.05). (B) Platelet expression of CD62P, CD63 and PAC-1 compared to CD61 upregulation 

(expressed as a ratio) upon activation by thrombin-related activation peptide TRAP (CD62P and 

CD63, platelet-rich plasma), or by collagen and PMA (PAC-1/CD61 ratio, washed platelets) (mean ± 

SEM; n=3). 

 

Supplementary Figure 4. Identification of ARPC1B c.191_195 TCAAGdelCCTGCCCins mutation.      

(A) Screenshot from the Integrative Genome Viewer (IGV from Broad Institute) shows the exon 5 

sequence reads from the ARPC1B gene of the patient obtained with the Ion Torrent PGM system. All 

reads show the c.191_195 TCAAGdelCCTGCCCins mutation. (B) Electrophorograms are shown from 

the Sanger sequencing results obtained with the exon-5 forward primer. The arrow indicates the 

start of the homozygous c.191_195 TCAAGdelCCTGCCCins mutation in the genomic DNA of the 
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patient in exon 5 of ARPC1 gene (second row). The mother and father of the patient (third and fourth 

row) show a heterozygous pattern. The healthy control (upper row) shows the wild-type sequence. 

 

Supplementary Figure 5: Fibroblast migration and ARPC1A/ARPC1B expression. Comparison of 

fibroblast migration in a scratch assay showed no difference between patient and control cells in 

response to PDGF and FCS. (A) Still images of patient and control cells after stimulation with 10% 

(v/v) FCS. (B) Quantification of the wound area after 0, 15, 30 and 45 hours after stimulation (mean ± 

SD of 12 different areas). The wound area at t=0 was defined as 100%. (C) Western blot of patient 

and control fibroblast lysates (upper panel) and control fibroblasts and blood cell lysates (lower 

panel) with anti-ARPC1A antibody and actin as a loading control.  


