10 research outputs found

    Chilensosides E, F, and G—New Tetrasulfated Triterpene Glycosides from the Sea Cucumber Paracaudina chilensis (Caudinidae, Molpadida): Structures, Activity, and Biogenesis

    No full text
    Three new tetrasulfated triterpene glycosides, chilensosides E (1), F (2), and G (3), have been isolated from the Far-Eastern sea cucumber Paracaudina chilensis (Caudinidae, Molpadida). The structures were established based on extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds differ in their carbohydrate chains, namely in the number of monosaccharide residues (five or six) and in the positions of sulfate groups. Chilensosides E (1) and F (2) are tetrasulfated pentaosides with the position of one of the sulfate groups at C-3 Glc3, and chilensoside G (3) is a tetrasulfated hexaoside. The biogenetic analysis of the glycosides of P. chilensis has revealed that the structures form a network due to the attachment of sulfate groups to almost all possible positions. The upper semi-chain is sulfated earlier in the biosynthetic process than the lower one. Noticeably, the presence of a sulfate group at C-3 Glc3—a terminal monosaccharide residue in the bottom semi-chain of compounds 1 and 2—excludes the possibility of this sugar chain’s further elongation. Presumably, the processes of glycosylation and sulfation are concurrent biosynthetic stages. They can be shifted in time in relation to each other, which is a characteristic feature of the mosaic type of biosynthesis. The hemolytic action of compounds 1–3 against human erythrocytes and cytotoxic activities against five human cancer cell lines were tested. The compounds showed moderate hemolytic activity but were inactive against cancer cells, probably because of their structural peculiarities, such as the combination of positions of four sulfate groups

    Chilensosides E, F, and G—New Tetrasulfated Triterpene Glycosides from the Sea Cucumber <i>Paracaudina chilensis</i> (Caudinidae, Molpadida): Structures, Activity, and Biogenesis

    No full text
    Three new tetrasulfated triterpene glycosides, chilensosides E (1), F (2), and G (3), have been isolated from the Far-Eastern sea cucumber Paracaudina chilensis (Caudinidae, Molpadida). The structures were established based on extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds differ in their carbohydrate chains, namely in the number of monosaccharide residues (five or six) and in the positions of sulfate groups. Chilensosides E (1) and F (2) are tetrasulfated pentaosides with the position of one of the sulfate groups at C-3 Glc3, and chilensoside G (3) is a tetrasulfated hexaoside. The biogenetic analysis of the glycosides of P. chilensis has revealed that the structures form a network due to the attachment of sulfate groups to almost all possible positions. The upper semi-chain is sulfated earlier in the biosynthetic process than the lower one. Noticeably, the presence of a sulfate group at C-3 Glc3—a terminal monosaccharide residue in the bottom semi-chain of compounds 1 and 2—excludes the possibility of this sugar chain’s further elongation. Presumably, the processes of glycosylation and sulfation are concurrent biosynthetic stages. They can be shifted in time in relation to each other, which is a characteristic feature of the mosaic type of biosynthesis. The hemolytic action of compounds 1–3 against human erythrocytes and cytotoxic activities against five human cancer cell lines were tested. The compounds showed moderate hemolytic activity but were inactive against cancer cells, probably because of their structural peculiarities, such as the combination of positions of four sulfate groups

    Asperindoles A–D and a p-Terphenyl Derivative from the Ascidian-Derived Fungus Aspergillus sp. KMM 4676

    No full text
    Four new indole-diterpene alkaloids asperindoles A&ndash;D (1&ndash;4) and the known p-terphenyl derivative 3&Prime;-hydroxyterphenyllin (5) were isolated from the marine-derived strain of the fungus Aspergillus sp., associated with an unidentified colonial ascidian. The structures of 1&ndash;5 were established by 2D NMR and HRESIMS data. The absolute configurations of all stereocenters of 1&ndash;4 were determined by the combination of ROESY data, coupling constants analysis, and biogenetic considerations. Asperindoles C and D contain a 2-hydroxyisobutyric acid (2-HIBA) residue, rarely found in natural compounds. Asperindole A exhibits cytotoxic activity against hormone therapy-resistant PC-3 and 22Rv1, as well as hormone therapy-sensitive human prostate cancer cells, and induces apoptosis in these cells at low-micromolar concentrations

    Cytotoxic Drimane-Type Sesquiterpenes from Co-Culture of the Marine-Derived Fungi <i>Aspergillus carneus</i> KMM 4638 and <i>Beauveria felina</i> (=<i>Isaria felina</i>) KMM 4639

    No full text
    Chemical investigation of a coculture of the marine-derived fungi Beauveria felina KMM 4639 and Aspergillus carneus KMM 4638 led to the identification of three new drimane-type sesquiterpenes, asperflavinoids B, D and E (2, 4, 5), and nine previously reported related compounds. The structures of these compounds were established using spectroscopic methods and by comparison with known analogues. We also investigated the cytotoxic activity of the isolated compounds against several cancer and normal cell lines. Asperflavinoid C (3) and ustusolate E (9) exerted a significant effect on human breast cancer MCF-7 cell viability, with IC50 values of 10 µM, and induced in caspase-dependent apoptosis and arrest of the MCF-7 cell cycle in the G2/M phase in these cells

    Fucoidan Sulfatases from Marine Bacterium Wenyingzhuangia fucanilytica CZ1127T

    No full text
    Fucoidans belong to a structurally heterogeneous class of sulfated polysaccharides isolated from brown algae. They have a wide spectrum of biological activities. The complex structures of these polysaccharides hinder structure-activity relationships determination. Fucoidan sulfatases can make useful tools for the determination of the fine chemical structure of fucoidans. In this study, identification and preparation of two recombinant sulfatases able to catalyze the cleavage of sulfate groups from fragments of fucoidan molecules is described for the first time. Two genes of sulfatases swf1 and swf4 of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T were cloned and the proteins were produced in Escherichia coli cells. Sulfatases SWF1 and SWF4 are assigned to S1_17 and S1_25 subfamilies of formylglycine-dependent enzymes of S1 family (SulfAtlas). Some molecular and biochemical characteristics of recombinant fucoidan sulfatases have been studied. Detailed specificity and catalytic features of sulfatases were determined using various sulfated fucooligosaccharides. Structures of products produced by SWF1 and SWF4 were established by nuclear magnetic resonance (NMR) spectroscopy. Based on the obtained data, the enzymes are classified as fucoidan exo-2O-sulfatase (SWF1) and fucoidan exo-3O-sulfatase (SWF4). In addition, we demonstrated the sequential action of sulfatases on 2,3-di-O-sulfated fucooligosacchrides, which indicates an exolitic degradation pathway of fucoidan by a marine bacterium W. fucanilytica CZ1127T

    New Tripeptide Derivatives Asterripeptides A–C from Vietnamese Mangrove-Derived Fungus <em>Aspergillus terreus</em> LM.5.2

    No full text
    Three new tripeptide derivatives asterripeptides A–C (1–3) were isolated from Vietnamese mangrove-derived fungus Aspergillus terreus LM.5.2. Structures of isolated compounds were determined by a combination of NMR and ESIMS techniques. The absolute configurations of all stereocenters were determined using the Murfey’s method. The isolated compounds 1–3 contain a rare fungi cinnamic acid residue. The cytotoxicity of isolated compounds against several cancer cell lines and inhibition ability of sortase A from Staphylococcus aureus of asterripeptides A–C were investigated

    Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima

    No full text
    Fucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds. This enzyme-assisted extraction protocol involves a one-step combined use of a commercial cellulase preparation (Cellic&reg;CTec2) and an alginate lyase from Sphingomonas sp. (SALy), reaction at pH 6.0, 40 &deg;C, removal of non-fucoidan polysaccharides by Ca2+ precipitation, and ethanol-precipitation of crude fucoidan. The workability of this method is demonstrated for fucoidan extraction from Fucus distichus subsp. evanescens (basionym Fucus evanescens) and Saccharina latissima as compared with mild acidic extraction. The crude fucoidans resulting directly from the enzyme-assisted method contained considerable amounts of low molecular weight alginate, but this residual alginate was effectively removed by an additional ion-exchange chromatographic step to yield pure fucoidans (as confirmed by 1H NMR). The fucoidan yields that were obtained by the enzymatic method were comparable to the chemically extracted yields for both F. evanescens and S. latissima, but the molecular sizes of the fucoidans were significantly larger with enzyme-assisted extraction. The molecular weight distribution of the fucoidan fractions was 400 to 800 kDa for F. evanescens and 300 to 800 kDa for S. latissima, whereas the molecular weights of the corresponding chemically extracted fucoidans from these seaweeds were 10&ndash;100 kDa and 50&ndash;100 kDa, respectively. Enzyme-assisted extraction represents a new gentle strategy for fucoidan extraction and it provides new opportunities for obtaining high yields of native fucoidan structures from brown macroalgae

    Absolute Stereochemistry and Cytotoxic Effects of Vismione E from Marine Sponge-Derived Fungus <i>Aspergillus</i> sp. 1901NT-1.2.2

    Get PDF
    The metabolic profile of the Aspergillus sp. 1901NT-1.2.2 sponge-associated fungal strain was investigated using the HPLC MS technique, and more than 23 peaks in the HPLC MS chromatogram were detected. Only two minor peaks were identified as endocrocin and terpene derivative MS data from the GNPS database. The main compound was isolated and identified as known anthraquinone derivative vismione E. The absolute stereochemistry of vismione E was established for the first time using ECD and quantum chemical methods. Vismione E showed high cytotoxic activity against human breast cancer MCF-7 cells, with an IC50 of 9.0 µM, in comparison with low toxicity for normal human breast MCF-10A cells, with an IC50 of 65.3 µM. It was found that vismione E inhibits MCF-7 cell proliferation and arrests the cell cycle in the G1 phase. Moreover, the negative influence of vismione E on MCF-7 cell migration was detected. Molecular docking of vismione E suggested the IMPDH2 enzyme as one of the molecular targets for this anthraquinone derivative

    Glioblastomas and the Special Role of Adhesion Molecules in Their Invasion

    No full text
    corecore