6 research outputs found

    A Ten-Fold Solvent Kinetic Isotope Effect for the Nonradiative Relaxation of the Aqueous Ferrate(VI) Ion

    Get PDF
    Hypervalent iron intermediates have been invoked in the catalytic cycles of many metalloproteins, and thus it is crucial to understand how the coupling between such species and their environment can impact their chemical and physical properties in such contexts. In this 2 work, we take advantage of the solvent kinetic isotope effect (SKIE) to gain insight into the nonradiative deactivation of electronic excited states of the aqueous ferrate(VI) ion. We observe an exceptionally large SKIE of 9.7 for the nanosecond-scale relaxation of the lowest energy triplet ligand field state to the ground state. Proton inventory studies demonstrate that a single solvent O-H bond is coupled to the ion during deactivation, likely due to the sparse vibrational structure of ferrate(VI). Such a mechanism is consistent with that reported for the deactivation of f-f excited states of aqueous trivalent lanthanides, which exhibit comparably large SKIE values. This phenomenon is ascribed entirely to dissipation of energy into a higher overtone of a solvent acceptor mode, as any impact on the apparent relaxation rate due to a change in solvent viscosity is negligible

    Mechanisms of the Cu(I)-Catalyzed Intermolecular Photocycloaddition Reaction Revealed by Optical and X-ray Transient Absorption Spectroscopies

    No full text
    The [2 + 2] photocycloaddition provides a simple, single-step route to cyclobutane moieties that would otherwise be disfavored or impossible due to ring strain and/or steric interactions. We have used a combination of optical and X-ray transient absorption spectroscopies to elucidate the mechanism of the Cu(I)-catalyzed intermolecular photocycloaddition reaction using norbornene and cyclohexene as model substrates. We find that for norbornene the reaction proceeds through an initial metal-to-ligand charge transfer (MLCT) state that persists for 18 ns before the metal returns to the monovalent oxidation state. The Cu K-edge spectrum continues to evolve until ∼5 μs and then remains unchanged for the 50 μs duration of the measurement, reflecting product formation and ligand dissociation. We hypothesize that the MLCT transition and reverse electron transfer serve to sensitize the triplet excited state of one of the norbornene ligands, which then dimerizes with the other to give the product. For the case of cyclohexene, however, we do not observe a charge transfer state following photoexcitation and instead find evidence for an increase in the metal-ligand bond strength that persists for several ns before product formation occurs. This is consistent with a mechanism in which ligand photoisomerization is the initial step, which was first proposed by Salomon and Kochi in 1974 to explain the stereoselectivity of the reaction. Our investigation reveals how this photocatalytic reaction may be directed along strikingly disparate trajectories by only very minor changes to the structure of the substrate

    Real-Time Investigation of Sn(II) Oxidation in Pb-Free Halide Perovskites by X-ray Absorption and Mössbauer Spectroscopy

    No full text
    Sn(II) halide perovskites are a less toxic alternative to Pb-based materials in perovskite solar cells, but oxidation to Sn(IV) introduces additional degradation pathways. Improving stability requires mechanistic pictures of O2-and H2O-induced degradation and their synergy. We demonstrate that X-ray absorption spectroscopy reports the average valency of the bulk material, allowing oxidation kinetics to be measured from minutes to days. Optical and X-ray diffraction studies demonstrate the challenge of isolating oxidative degradation with techniques lacking element specificity and oxidation state sensitivity. Finally, 119Sn Mössbauer spectroscopy is presented as a lab-based technique capable of providing information on valency and speciation throughout oxidation

    Photochemical and Photophysical Dynamics of the Aqueous Ferrate(VI) Ion

    No full text
    Ferrate(VI) has the potential to play a key role in future water supplies. Its salts have been suggested as green alternatives to current advanced oxidation and disinfection methods in water treatment, especially when combined with ultraviolet light to stimulate generation of highly oxidizing Fe(V) and Fe(IV) species. However, the nature of these intermediates, the mechanisms by which they form, and their roles in downstream oxidation reactions remain unclear. Here, we use a combination of optical and X-ray transient absorption spectroscopies to study the formation, interconversion, and relaxation of several excited-state and metastable high-valent iron species following excitation of aqueous potassium ferrate(VI) by ultraviolet and visible light. Branching from the initially populated ligand-to-metal charge transfer state into independent photophysical and photochemical pathways occurs within tens of picoseconds, with the quantum yield for the generation of reactive Fe(V) species determined by relative rates of the competing intersystem crossing and reverse electron transfer processes. Relaxation of the metal-centered states then occurs within 4 ns, while the formation of metastable Fe(V) species occurs in several steps with time constants of 250 ps and 300 ns. Results here improve the mechanistic understanding of the formation and fate of Fe(V) and Fe(IV), which will accelerate the development of novel advanced oxidation processes for water treatment applications
    corecore