4,323 research outputs found

    Inheritance-Based Diversity Measures for Explicit Convergence Control in Evolutionary Algorithms

    Full text link
    Diversity is an important factor in evolutionary algorithms to prevent premature convergence towards a single local optimum. In order to maintain diversity throughout the process of evolution, various means exist in literature. We analyze approaches to diversity that (a) have an explicit and quantifiable influence on fitness at the individual level and (b) require no (or very little) additional domain knowledge such as domain-specific distance functions. We also introduce the concept of genealogical diversity in a broader study. We show that employing these approaches can help evolutionary algorithms for global optimization in many cases.Comment: GECCO '18: Genetic and Evolutionary Computation Conference, 2018, Kyoto, Japa

    Some remarks on quasi-Hermitian operators

    Full text link
    A quasi-Hermitian operator is an operator that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Whereas those metric operators are in general assumed to be bounded, we analyze the structure generated by unbounded metric operators in a Hilbert space. Following our previous work, we introduce several generalizations of the notion of similarity between operators. Then we explore systematically the various types of quasi-Hermitian operators, bounded or not. Finally we discuss their application in the so-called pseudo-Hermitian quantum mechanics.Comment: 18page

    Weak commutation relations of unbounded operators: nonlinear extensions

    Full text link
    We continue our analysis of the consequences of the commutation relation [S,T]=\Id, where SS and TT are two closable unbounded operators. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space \H where the operators act. {We also consider what we call, adopting a physical terminology}, a {\em nonlinear} extension of the above commutation relations

    Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices

    Full text link
    We present a comprehensive study of the thermodynamic properties of the three-dimensional fermionic Hubbard model, with application to cold fermionic atoms subject to an optical lattice and a trapping potential. Our study is focused on the temperature range of current experimental interest. We employ two theoretical methods - dynamical mean-field theory and high-temperature series - and perform comparative benchmarks to delimitate their respective range of validity. Special attention is devoted to understand the implications that thermodynamic properties of this system have on cooling. Considering the distribution function of local occupancies in the inhomogeneous lattice, we show that, under adiabatic evolution, the variation of any observable (e.g., temperature) can be conveniently disentangled into two distinct contributions. The first contribution is due to the redistribution of atoms in the trap during the evolution, while the second one comes from the intrinsic change of the observable. Finally, we provide a simplified picture of the cooling procedure recently proposed in J.-S. Bernier et al., Phys. Rev. A 79, 061601 (2009) by applying this method to an idealized model.Comment: 17 pages, 27 figures, version published in PR

    Carboplatin binding to a model protein in non-NaCl conditions to eliminate partial conversion to cisplatin, and the use of different criteria to choose the resolution limit

    Full text link
    Hen egg white lysozyme (HEWL) co-crystallisation conditions of carboplatin without sodium chloride (NaCl) have been utilised to eliminate partial conversion of carboplatin to cisplatin observed previously. Tetragonal HEWL crystals were successfully obtained in 65% MPD with 0.1M citric acid buffer at pH 4.0 including DMSO. The X-ray diffraction data resolution to be used for the model refinement was reviewed using several topical criteria together. The CC1/2 criterion implemented in XDS led to data being significant to 2.0{\AA}, compared to the data only being able to be processed to 3.0{\AA} using the Bruker software package (SAINT). Then using paired protein model refinements and DPI values based on the FreeR value, the resolution limit was fine tuned to be 2.3{\AA}. Interestingly this was compared with results from the EVAL software package which gave a resolution limit of 2.2{\AA} solely using crossing 2, but 2.8{\AA} based on the Rmerge values (60%). The structural results showed that carboplatin bound to only the N{\delta} binding site of His-15 one week after crystal growth, whereas five weeks after crystal growth, two molecules of carboplatin are bound to the His-15 residue. In summary several new results have emerged: - firstly non-NaCl conditions showed a carboplatin molecule bound to His-15 of HEWL; secondly binding of one molecule of carboplatin was seen after one week of crystal growth and two molecules were bound after five weeks of crystal growth; and thirdly the use of several criteria to determine the diffraction resolution limit led to the successful use of data to higher resolution.Comment: 14 pages; submitted to Acta Cryst D Biological Crystallography reference number tz504

    Toward a Holistic Agricultural Student Recruitment Model: A National Analysis of the Factors Affecting Students’ Decision to Pursue an Agricultural Related Degree

    Full text link
    Currently, the agricultural industry struggles to fill positions with qualified agricultural workers. Therefore, it is critical to attract high caliber individuals to agricultural degree programs that are prepared to enter the workforce with the skills needed to navigate complex issues and problems. The purpose of this national study was to identify key factors that influence the recruitment of agriculture students at land-grant and non-land-grant universities. Using Chapman’s model of student success as our conceptual lens, we tested 66 factors identified in the literature as successful recruitment strategies for colleges of agriculture based on students’ personal characteristics as well as key external influences. We discovered statistically significant (p \u3c .05) differences existed based on students’ gender and race/ethnicity. To better operationalize the findings from this study for U.S. colleges of agriculture, we developed the agricultural student recruitment model (ASRM). The model visually represents the distinct but intersecting factors that most profoundly influence students’ academic degree decisions. Moving forward, we recommend colleges of agriculture use the ASRM as a tool to better resonate with populations that may lack representation in their degree programs and the state’s agricultural industry

    Propagation on networks: an exact alternative perspective

    Get PDF
    By generating the specifics of a network structure only when needed (on-the-fly), we derive a simple stochastic process that exactly models the time evolution of susceptible-infectious dynamics on finite-size networks. The small number of dynamical variables of this birth-death Markov process greatly simplifies analytical calculations. We show how a dual analytical description, treating large scale epidemics with a Gaussian approximations and small outbreaks with a branching process, provides an accurate approximation of the distribution even for rather small networks. The approach also offers important computational advantages and generalizes to a vast class of systems.Comment: 8 pages, 4 figure

    Experimental limits of ghost diffraction: Popper’s thought experiment

    Get PDF
    Quantum ghost diffraction harnesses quantum correlations to record diffraction or interference features using photons that have never interacted with the diffractive element. By designing an optical system in which the diffraction pattern can be produced by double slits of variable width either through a conventional diffraction scheme or a ghost diffraction scheme, we can explore the transition between the case where ghost diffraction behaves as conventional diffraction and the case where it does not. For conventional diffraction the angular extent increases as the scale of the diffracting object is reduced. By contrast, we show that no matter how small the scale of the diffracting object, the angular extent of the ghost diffraction is limited (by the transverse extent of the spatial correlations between beams). Our study is an experimental realisation of Popper’s thought experiment on the validity of the Copenhagen interpretation of quantum mechanics. We discuss the implication of our results in this context and explain that it is compatible with, but not proof of, the Copenhagen interpretation

    Search for universality in one-dimensional ballistic annihilation kinetics

    Full text link
    We study the kinetics of ballistic annihilation for a one-dimensional ideal gas with continuous velocity distribution. A dynamical scaling theory for the long time behavior of the system is derived. Its validity is supported by extensive numerical simulations for several velocity distributions. This leads us to the conjecture that all the continuous velocity distributions \phi(v) which are symmetric, regular and such that \phi(0) does not vanish, are attracted in the long time regime towards the same Gaussian distribution and thus belong to the same universality class. Moreover, it is found that the particle density decays as n(t)~t^{-\alpha}, with \alpha=0.785 +/- 0.005.Comment: 8 pages, needs multicol, epsf and revtex. 8 postscript figures included. Submitted to Phys. Rev. E. Also avaiable at http://mykonos.unige.ch/~rey/publi.html#Secon

    How do electronic carriers cross Si-bound alkyl monolayers?

    Full text link
    Electron transport through Si-C bound alkyl chains, sandwiched between n-Si and Hg, is characterized by two distinct types of barriers, each dominating in a different voltage range. At low voltage, current depends strongly on temperature but not on molecular length, suggesting transport by thermionic emission over a barrier in the Si. At higher voltage, the current decreases exponentially with molecular length, suggesting tunneling through the molecules. The tunnel barrier is estimated, from transport and photoemission data, to be ~1.5 eV with a 0.25me effective mass.Comment: 13 pages, 3 figure
    • …
    corecore