58 research outputs found

    Mandibular Canine Dimorphism in Establishing Sex Identity in the Lebanese Population

    Get PDF
    Background and Objective. In forensic investigations, mandibular canines provide excellent materials to identify gender since they are more likely to survive disasters. The objective of this study was to investigate gender dimorphism by comparing the mesiodistal width of mandibular permanent canines and intercanine distance in a group of Lebanese population. Methods. Participants consisted of undergraduate students from the School of Dentistry, Lebanese University, for two academic years who fulfilled the inclusion criteria. Canine widths and intercanine distance were measured by one operator directly on dental casts using a digital caliper. Results. One hundred thirty-three Lebanese dental students (54 males and 69 females) aged 18–25 were included in the study. The intercanine distance was significantly greater in males (P value < 0.0001). The right and the left canine widths were significantly greater in males than in females (P value < 0.0001). However, no significant difference was found between left and right canines for males (P value > 0.05) and females (P value > 0.05). The mean width of canine was greater than 7.188 mm for males. Conclusion. The parameters measured in the present study are of great help in sex identification in forensic investigations in the Lebanese adult population

    Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin

    Results of the Ontology Alignment Evaluation Initiative 2009

    Get PDF
    euzenat2009cInternational audienceOntology matching consists of finding correspondences between on- tology entities. OAEI campaigns aim at comparing ontology matching systems on precisely defined test cases. Test cases can use ontologies of different nature (from expressive OWL ontologies to simple directories) and use different modal- ities, e.g., blind evaluation, open evaluation, consensus. OAEI-2009 builds over previous campaigns by having 5 tracks with 11 test cases followed by 16 partici- pants. This paper is an overall presentation of the OAEI 2009 campaign

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Status and Performance of the Underground Muon Detector of the Pierre Auger Observatory

    Get PDF

    The Fitting Procedure for Longitudinal Shower Profiles Observed with the Fluorescence Detector of the Pierre Auger Observatory

    Get PDF

    Investigating the UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory

    Get PDF
    Cosmogenic neutrinos are expected to originate in the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs), as a result of their interactions with background photons. Due to these reactions, the visible Universe in UHECRs is more limited than in neutrinos, which instead could reach us without interacting after traveling cosmological distances. In this contribution, we exploit a multimessenger approach by computing the expected energy spectrum and mass composition of UHECRs at Earth corresponding to combinations of spectral parameters and mass composition at their sources, as well as parameters related to the UHECR source distribution, and by determining, at the same time, the associated cosmogenic neutrino fluxes. By comparing the expected UHECR observables to the energy spectrum and mass composition measured at the Pierre Auger Observatory above 1017.8 eV and the expected neutrino fluxes to the most updated neutrino limits, we show the dependence of the neutrino fluxes on the characteristics of the the properties of the potential sources of UHECRs, such as their cosmological evolution and maximum redshift. In addition, the fraction of protons compatible with the data is also investigated in terms of expected neutrino fluxes

    Search for primary photons at tens of PeV with the Pierre Auger Observatory

    Get PDF

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data
    corecore